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PREFACE

As evidenced by the success of the first Working Conference on Architectures and Compilation
Techniques for Fine and Medium Grain Parallelism, last year in Orlando, and the superb pro-
gram of this year's conference, fine and medium grain parallelism is a vital, vibrant research
topic. Within this area of research, new developments in superscalar and VLIW architectures,
and their associated compilation techniques, have provided exciting new avenues to extract per-
formance from a slowing technology curne.

The second conference in this series, the International Conference on Parallel Architectures and
Compilation Techniques- PACT '94- has set as its goal to become the premier forum for resear-
chers, developers and practitioners in the fields of fine and medium grain parallelism. This will
establish the yearly conference as one of the main events in the field, and its proceedings as an
invaluable archival publication of important results in the area.

This year, the program consists of 28 full-length papers and and a number of short (poster)
papers, carefully selected by the Program Committee and external reviewers from among 101
submissions. A keynote speech by Arvind will open the conference, and Jack Dennis will also
address the banquet attendees. Bob Rau and Anoop Gupta will present invited talks to open
the second and third days of the conference, respectively. The panel session, on the subject
of programming multithreaded machines, has been organized by A.P. Wim Bohm. Preceding
the conference itself are three tutorial sessions, "Parallelizing Compilers: How to Discover and
When to Exploit Parallelism Automatically," by Constantine Polychronopoulos and Alex Ni-
colau, "Data-Driven and Multithreaded Architectures for High-Performance Computing," by
Jean-Luc Gaudiot, and "Mechanisms for Exploiting Instruction Level Parallelism," by Yale

Patt. All these make up a high quality, exciting technical program, complemented by the loca-
tion of the conference in the beautiful city of Montreal.

We are grateful to all those who contributed their time and effort in making PACT '94 a reality.
Our Steering Committee members, Michel Cosnard (also Publication chair), Kemal Ebcioglu
and Jean-Luc Gaudiot, provided a vital link to the original intent of the conference. Efforts by
Herbert Hum (Local Arrangements) Zary Segall (Publicity), Walid Najjar (Treasurer, Regis-
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tration) are greatly appreciated, as are those of Erik Altman (Graphics, PC Administration).
We also acknowledge the members of the Program Committee and reviewers, listed separately
in these proceedings.

Finally, we acknowledge the support of our sponsors, the International Federation of Infor-
mation Processing (IFIP) Working Group 10.3 (Concurrent Systems), and the Association for

Computing Machinery (ACM) Special Interest Group on Computer Architecture (SIGARCH),
in cooperation with Centre de Recherche Informatique de Montrdal (CRIM), the Institute of

Electrical & Electronics Engineers (IEEE) Computer Society Technical Committees on Compu-

ter Architecture (TCCA) and Parallel Processing (TCPP), the ACM Special Interest Group on
Programming Languages (SIGPLAN), and financial support from the Office of Naval Research

(ONR), IBM Canada's Center for Advanced Studies (CAS), and Hydro Quebec.

Gabriel Silberman
IBM T.J. Watson Research Center

General Chairman

Guang Gao
Mc Gill University
Program Committee Chairman
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EM-C: Programming with Explicit Parallelism and
Locality for the EM-4 Multiprocessor

Mitsuhisa Satoa, Yuetsu Kodamaa, Shuichi Sakaib and Yoshinori Yamaguchia

a Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

bRWC Tsukuba Research Center, Mitsui Bldg., Tsukuba, Ibaraki 305, Japan

Abstract: In this paper, we introduce the EM-C language, a parallel extension of C
to express parallelism and locality for efficient parallel programming in the EM-4 mul-
tiprocessor. The EM-4 is a distributed memory multiprocessor which has a dataflow
mechanism. The dataflow mechanism enables a fine-grain communication packet through
the network to invoke the thread of control dynamically with very small overhead, and
is extended to access remote memory in different processors. The EM-C provides the
notion of a global address space with remote memory access. It also provides new lan-
guage constructs to exploit medium-grain parallelism and tolerate several remote opera-
tion latencies. The EM-C compiler generates an optimal code in the presence of explicit
parallelism. We also demonstrate the EM-C concepts by some examples and report p,
formance results obtained by optimizing parallel programs with explicit parallelism ai,,
locality.

Keyword Codes: C.1.2; C.4; D.1.3; D.3.3
Keywords: Multiprocessors; Performance of Systems; Language Constructs and Fea-
tures

1 Introduction

EM-C is a parallel extension of the C programming language designed for efficient parallel
programming in the EM-4 multiprocessor. The EM-417] is a distributed memory multi-
processor which has a dataflow mechanism. Dataflow processors are designed to directly
send and dispatch small fixed-size messages to and from the network. Those messages
are interpreted as "dataflow tokens", which carry a word of data and a continuation to
synchronize and invoke the destination thread in other processors. The datafiow mech-
anism allows multiple threads of control to be created and efficiently interact. In the
EM-4, network messages can also be interpreted as fine-grain operations, such as remote
memory reads and writes in a distributed memory environment. Remote memory access
operations can be thought of as invoking a fine-grain thread to reference memory in a
different processor.

EM-C provides the notion of a global address space which spans the local memory of
all processors. The programmer can distribute data structures as single objects in the
global address space. Using remote read/write messages, the language supports direct
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access to remote shared data in a different processor. Although it provides the illusion
of global shared memory, since it does not provide a hardware shared memory coherence
mechanism, frequent remote memory accesses cause large amounts of latency, resulting in
poor performance. If reference patterns are static or regular, EM-C allows the programmer
to convert them into coarse-grained communication in order to reference them in the local
space.

Tolerating the long and unpredictable latencies of remote operations is the key to high
processor utilization. Multithreading is an effective technique for hiding remote operation
latency. The dataflow mechanism supports very efficient multithreaded execution. The
programmer can decompose a program into medium-grain tasks to hide the remote oper-
ation latency with the computation of other tasks. We introduce the task block language
construct to express and control parallelism of tasks.

Given the failure of automatic parallelizing compilers, many programmers want to
explore writing explicit parallel programs. Some language and compiler researchers be-
lieve that explicit parallelism should be avoided, and implicitly parallel languages such
as functional languages should be used. Nevertheless, we desire language constructs for
expressing explicit parallelism and locality in parallel programs to achieve the best per-
formance for the underlying hardware. Then, the ability to exploit parallelism and to
manage locality of data is not limited by the compiler automatic transformation. The
compiler takes care to generate optimal code in the presence of explicit parallelism. EM-C
has been used extensively as a tool for EM-4 parallel programming. It may be used as a
compilation target for higher level of parallel programming languages. Although the EM-
C execution model is based on the EM-4 architecture, the EM-C concept is not limited to
the EM-4. With software runtime systems, it can be applied to other modern distributed
memory multiprocessors such as Thinking Machine's CM-5.

In Section 2, we summarize the EM-4 architecture, and introduce the EM-C language
constructs in Section 3. We illustrate how these are used in EM-4 parallel programming
in Section 4, and also report the performance results achieved in the EM-4 prototype.
Section 5 describes the EM-C compiler and some of its optimization techniques. We
compare EM-C and its execution model with related works in Section 6, and conclude
with a summary of our work in Section 7.

2 The EM-4 multiprocessor

The EM-4 is a parallel hybrid dataflow/von Neumann multiprocessor. The EM-4 consists
of a single chip processing element, EMC-R, which is connected via a Circular Omega
Network. The EMC-R is a RISC-style processor suitable for fine-grain parallel processing.
The EMC-R pipeline is designed to fuse register-based RISC execution with packet-based
dataflow execution for synchronization and message handling support.

All communication is done with small fixed-sized packets. The EMC-R can generate
and dispatch packets directly to and from the network, and it has hardware support to
handle the queuing and scheduling of these packets.

Packets arrive from the network and are buffered in the packet queue. As a packet
is read from the packet queue, a thread of computation specified by the address portion
of the packet is instantiated along with the one word data. The thread then runs to its
completion, and any live state in the thread may be saved to an activation frame associated
with the thread. The completion of a thread causes the next packet to be automatically
dequeued and interpreted from the packet queue. Thus, we call this an explicit-switch
thread. Network packets can be interpreted as dataflow tokens. Dataflow tokens have the
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option of matching with another token on arrival - unless both tokens have arrived, the
token will save itself in memory and cause the next packet to be processed.

The current compiler compiles the program into several explicit-switch threadls[91. The
EM-4 recognizes two storage resources, namely, the template segments and the operand
segments. The compiled codes of functions are stored in template segments. Invoking
a function involves allocating an operand segment as the activation frame. The caller
allocates the activation frame, depositing the argument value into the frame, and sends
its continuation as a packet to invoke the callee's thread. Then it terminates, explicitly
causing a context-switch. The first instruction of a thread operates on input tokens, which
are loaded into two operand registers. The registers cannot be used to hold computation
state across threads. The caller saves any live registers to the current activation frame
before context-switch. The continuation sent from the caller is used for returning the
result, as the return address in a conventional call. The result from the called function
resumes the caller's thread by this continuation.

This calling sequence can be easily extended to call a function in a different processor
remotely. When the caller forks a function as an independent thread, it is not suspended
after calling the function. When using the parallel extension in EM-C, an executing thread
may invoke several threads concurrently in other activation frames. Therefore, the set of
activation frames form a tree rather than a stack, reflecting the dynamic calling structure.

The interpretation of packets can also be defined in software. On the arrival of a
particular type of packet, the associated system-defined handler can be executed. For
remote memory access, the packet handlers are provided to perform remote memory
reads and writes. For a remote memory access packet, we use the packet address as a
global address rather than specifying a thread. A global address consists of the processor
number and the local address in the processor. The remote memory read generates a
remote memory read packet, and terminates the thread. The remote read packet contains
a continuation to return the value, as well as a global address. The result of the remote
memory read packet is sent containing the value at the global address to the continuation
which will receive the value. The remote memory write generates a remote memory write
packet, which contains a global address and the value to be written. The thread does not
terminate when the remote write message is sent.

In the EMC-R processor, incoming packets are queued and served in FIFO (first-in
first-out) order. Any communication does not interrupt the execution. Threads switch
explicitly at a function call and return. It is sometimes useful to form critical sections.

3 EM-C Parallel Programming Language

3.1 Global Address Space

EM-C provides a global address space and allows data in that space to be referenced
through global pointers. A global pointer contains a global address, and is declared by the
quantifier global to the pointer declaration:

int global *p;

A global pointer may be constructed by casting a local pointer to a global pointer. The
same object is referenced by different PEs through the global pointer. The processor
select operator Q is used to construct a global address as follows:

p = &xOpe-addr; or p = &xC[pe.id);
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where pe-addr is a processor address in the network, and pe-id is an unique processor
identifier starting from 0. The processor select operator evaluates the left side expression
within the processor given by the right side. Arithmetic on global pointers is performed
on its local address while the processor address remains unchanges.

EM-C allows an array object to be distributed in a global space. A global array object
is declared by the local declaration and processor mapping declaration separated by ,.

data.t global A [N] Q [M] ;

This corresponds to a cyclic layout of a two-dimensional N*M array. The data objects de-
clared by the local declaration are laid out according to the processor mapping dimensions
in a wrapped fashion starting with processor zero. If M is chosen equal to the number
of processors, this can be viewed as a blocked layout of a one-dimensional array of M*N
size. The element of the global array can be referenced by the processor select operator.
For example, the expression AWOi)[j] references the i-th element of j/(the number of
processors)-th A at the processor j%(the number of processors).

As the default, data objects are allocated at the same local address as private object in
each PE. Since all accesses to such objects are local, access can proceed without interfer-
ence or delay. Any object declared without a distribution quantifier is simply replicated
with one copy allocated to each PE.

3.2 Task Block for Medium Grain Parallelism

A task block is a block of code which can be executed by a thread with its own context.
The forkwith construct is used to create a thread which executes a task block.

forkwith(pammeters for task body){ ... task body ... }

The task body section contains the code executed when the thread runs. The programmer
gives a list of variables to reference the values of these variables from the enclosing context.
EM-C implementation allocates an activation frame for the task, and copies these values
into the task's context when the task is created.

Threads may communicate and coordinate by leaving and removing data in the syn-
chronizing data structure. EM-C provides the I-skructure operation on any word in the
global address space as well as the conventional lock operations. This synchronizing data
structure may be used for split-phase operations to tolerate the latencies of remote oper-
ations.

The dowith construct blocks the parent thread until the execution of the task body
terminates.

dowith (parameters for task body) {
... task body ... } [ update(update variable list)]

The optional update reflects the values of specified variables into the parent's environment
at termination. The task body may include any number of nested task blocks.

3.3 Data Oriented Task Block: Where

The where construct executes the task body in the PE where the data is allocated.

where (global pointer variable or expression) task block statement

Immmm•mm l ~
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This construct is useful for handling complicated data structures linked by global pointers
among different PEs in an irregular application. Once a data structure has been built,
related computation tasks may be allocated using the global pointer.

For convenience, the processor select operator can be used to execute a function in the
specified processor. For example, the following code remotely calls foo at the processor
specified by pe-addr.

r = foo(2args.... )Gpe-addr;

3.4 Constructs for Multithreading

The parallel sections construct, denoted by the parallel keyword, concurrently executes
each statement in a compound statement block as a fixed set of threads. It is similar to
the cobegin/coend or the Parallel Case statements, and is a block structtired construct
used to specify parallel execution of the identified sections of code. A parallel sections
statement completes and control continues to the next statement only when all inside
statements have completed.

Parallel loops differ from their sequential counterparts in that variables must be de-
clared as private id each iteration context. Instead of a high-level parallel loop construct,
EM-C provides the iterate construct which spawns a fixed number of the same iteration
task blocks.

iterate (the number of threads) task block statement [reduction operation]

The optional reduction operation can be performed during the synchronization of threads
for dowith task blocks. For example, a pre-schedule loop can be implemented as follows:

iterate(NITERATE) dowith() {
for(s = 0, i = iterate-ido; i < N; i += NITEFLATE) s += A~i];

} reductionsum(s);

Here, reductionsum performs a sum reduction operation on variable s. The construct
iterateid() returns the identifier of the iteration task from 0 to NITERATE - 1.

The parallel sections and iterate constructs are used to tolerate the remote operation
latency with other tasks by the multithreading technique.

3.5 Parallelism over Global Data Object

The everywhere construct parallelizes the loop over distributed data structures. It spawns
the task block in every processor.

everywhere task block statement [reduction operation]

The following code shows an inner-product example using the everywhere construct.

data-t global A[N/N.PE]QrNPE), global B[N/NPE)Q[NPE];

everywhere dowithO {
for(s = 0, i = 0; i < N/N_PE; i++)

s += A[i]*B(i];
} reductionsum(s);



8

*define BLKN (N/N PE)
global data-t A [BL_NLN [N] [NPE}; global data-t C [BLK_N] [NJ 6 [NPE].
global data.t B[BLKN] [NI N[NPE]; /* transposed '/
data-t localB[N];

matrix-multiply() {
everywhere dovith(){

int i, j, k, 1, iter; datat t;
j - my-id*NBLK;
for(iter-O ; iter < N; iter++.j÷+){

if(j >- N) j - 0;
mem-copyout (B [jXBLKN], (global) localB, N*sizeof (data-t) ) I [j/BLKN]);
barrier( ;
for (i-O;i<BLKN;i++){

for (t-O,k-O;k<N;k++) t +- A[i][k]*localB[k];
c[iJ[j] - t;

Figure 1: Matrix Multiply (Block Copy)

In the example, the global arrays A and B without a processor select operator are referenced
as local objects.

Within the context of an everywhere task block, the barrier synchronization can be
used to synchronize every processor. To implement the barrier synchronization on EM-4,
we use the packet exchange communication of a butterfly network. This allows reduction
operations such as sum to be performed during packet exchange.

4 Programming in EM-C
This section describes some examples and the performance actually achieved on the EM-
4 prototype. We also illustrate how to use the EM-C constructs to optimize parallel
programs.

4.1 Matrix multiplication

If program communication patterns are static, they can be converted into coarse-grained
block copy operation. This transformation reduces the frequency of remote operations in
a distributed memory environment. In the matrix multiply with column-oriented block
distribution (Fig. 1), each row in the transposed matrix B is copied into the local buffer
localB in the outermost loop. The block copy memcopyout is remotely invoked to send
the block of data. To avoid remote access conflicts, the starting row is skewed according
to the processor number. Processors are distinguished by the value of my-id, and the
number of processors is given as a constant NYPE. Matrices A and C are referenced locally.

Figure 2 shows the performance of three versions of matrix multiply for square matrices
up to size 256. Unfortunately, the EM-4 has no floating point hardware, so we measured
the performance in the unit of integer operations. The lowest curve "Remote read" is for
the simplest version which accesses matrix B in the innermost loop by remote memory
read. This version only uses a single thread. Although the performance can be improved
by mnultitbreading technique, it cannot exceed the block version due to the overhead of
fine-grain remote reads in this program. The curve labeled "Block Copy" is for the version
described above. The "Shift" version uses the cyclic shift algorithm, which is usually used
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Figure 2: Performance of matrix multiply (64 processors)

in conventional message passing model. In EM-C, the shift operation has the extra cost
to move data from message buffers to the program data structure.

4.2 Knapsack Problem

Given n objects with weights Wi and profits Pi, and a knapsack capacity M, the knapsack
problem is to determine the subset of objects which maximumize total profits. The
knapsack problem gives rise to a search space of 2" of objects, which can be depicted as
a binary tree, where the root represents an empty knapsack, and going down to leveli
subtree represents the choice of object,.

We implemented the Branch and Bound algorithm presented in [1], as shown in Figure
3. Given a partial solution, a lower bound for the best total solution can be computed
by adding objects with maximal profit weight ratio until an object exceeds the knapsack
capacity, while an upper bound can be computed by adding the part of the objects that
fill the capacity. Subtrees are cut by estimating the upper bound of a partial solution
and comparing it to a shared variable GLow containing the current best lower bound in
all the processors.

The array for weights and profits are replicated in each processor, and are referenced
locally. The variables next lpe and next2_pe contain the neighbor processor addresses
in the EM-4's Omega network topology. Remote function calls for the subtrees are done
within parallel sections, and parallelism spreads in the form of tree in omega topology.
To avoid the exhaustion of resources, parallel remote calls are switched into sequential
local calls when the number of activations, counted by the variable thread-count, exceeds
the limit THREAD-LIMIT (50 in the current implementation). Since a thread is executed
exclusively, this variable is updated in a critical section. Figure 4 shows the speedups
of 30 random data from 20 objects to 60 objects with 80 processors. The trend seems
to be that the harder the problem becomes, the better performance the parallel program
obtains. For small problems, the speculative execution does not work effectively, and may
sometimes make them even slow. To manage the shared variable GLow, we implemented
two versions of FetchGLov and UpdateGLow. The version "remote read/remote update"
always references and updates the GLow in processor 0. In "local read/broadcast update",
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int WIN]. PIN]; /* weight and property */
global int GLow; /* shared variable */

int knapbb(i,cpM) int i,cpM;
{ int lwb,upb,Opt, mii,curlow, l,r;

static int thread-count = 0;

Opt = cp;
if Ui < N kk M > 0) { /* compute lower and upper bounds */

for(lwbpcpii - i,m = M; (ii < N k& m >- W[ii]); ii++){
m -= W[ii]; lwb -+ PEii]; }

if(ii < N) upb = lub + (m*P[iiJ)/W[ii]; else upb - lvb;
curlow - FetchGLowo; /* fetch global variable */
if(curlow < lwb) UpdateGLov(lwb);
else if(upb < curlow) return(Opt);
if (M >= WtiJ){

if(thread-count < THEAD_LIMIT){
thread-count++;
parallel { /* parallel call e/

1 = knapbb(i+lcp+P [i] ,M-W[i]))nextl-pe;
r = knapbb(i+icpM)Qnext2_pe;

thread-count--;
} else { /* sequential call */

1 = knapbb(i+icp+P[i],M-W[i],0);
r = knapbb(i+l,cp.M,O);}

Opt - MAX(l,r);
} else Opt = knapbb(i+1,cp,M,O);}

return(Opt);

Figure 3: Knapsack problem in EM-C

Ad 100
4J

-10

--- remote read/
W remote update

- -local read/
=0.1 broadcast update

Sequential execution time (second)

Figure 4: Performance of knapsack problem (80 processors)
GLow is replicated in every processor and referenced locally. The value of GLow is
updated by invoking a thread to broadcast the new value. This policy is better in the
harder problems, because reference occurs more frequently than update.

"- u ,= -n - -uuuuuunll l M =
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Read wire data, and distribute them for all PEs.
for (repeat 2 times){

everywhereO dowith() {
/* this task block is executed in every PE *1
iterate (#threads for wiring) dowithO{

pick a wire in the current PE.
rip up the previous route from the cost array. (if not first time)
make pin pairs by building minimum spanning tree
for (each generated pin pairs) {

iterate (#threads for routing)
dowith() {

pick one possible route.
calculate the route cost with the current cost array.

choose the best route with the minimum cost.I
record the best routes, and update the cost array.

/* for load balancing */
if a wire in other PEs is not routed yet, move the wires and route it.}

}

Figure 5: Outline of Locus Route in EM-C

4.3 LocusRoute

LocusRoute[6] is a standard-cell routing program. The cost array is a main data struc-
ture in LocusRoute, which is referenced and updated by wiring processes. In the EM-C
implementation, the cost array is statically distributed in a global address space. Wire
data is distributed in round-robin fashion, and is referenced locally in wiring processes.

The outline of the EM-C implementation is illustrated in Figure 5. The major modifi-
cation from the original program is eliminating several global variables to expose parallel
loops. Parallel loops are executed inside everywhere sections. Since the cost array is dis-
tributed in each processor, its elements are accessed by remote memory operations. To
tolerate the latency of remote reference, multiple wires are routed in parallel even in the
same processor by the iterate construct. To find the best routes, a few threads are also
generated dynamically by iterate. At end of the loop, each routing process tries to move
unrouted wires in other processors for load balancing. With 64 processors, we achieved a
speedup of 31.5 for the input circuit (Primary2) which has 3817 wires in an 1920 grid by
20 channel area. Through careful experimentation, we found that four to eight threads
in each processor is sufficient to hide the remote operation latency in the EM-4 proto-
type. Since aggressive multithreading increases pressure on the network, it can have a
negative impact on performance as the number of processors increases. Detailed results
are reported in 181.

5 The EM-C Compiler

5.1 Intermediate Code

The compiler takes an expression tree generated by the front-end, and expands it into
the intermediate code. In the intermediate code of the EM-C compiler, we introduce the
following special operations to represent parallel programs.
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LFORK label, output-dir, break-or-continue, optional-operands,
LF1OR invokes a new thread running from the specified label in the current actti-
vation frame. The operand break-or-continue indicates whether the current thread
terminates after this operation.

GFOR1 label, output-dir, break-or-continue, optional-operands,
This operation indicates an indirect control flow. GFOR(K sends the continuations
for the specified label to invoke a new thread in an external activation frame. The
thread is resumed by the return value sent from the external thread. The return
value is obtained at the destination of a GFORK operation by the INPUT(input-dir)
operation.

SEND data, destination, optional-operands,
Sends the data to the destination. This operation is used for remote asynchronous
write and forking independent threads.

The optional operands may specify the value carried across threads. The output-dir and
input-dir operands identify input and output for synchronization. The value may be either
lop, left, or right; lop invokes the destination thread immediately, and left and right
are used to join two threads. This synchronization is done by dataflow matching.

For example, the remote read is compiled into the following code:

GFORK CO, lop, break, "REMOTE-READ", global address
CO: variables = INPUT(lop)

The INPUT operations are removed by assigning the operand registers to the destination
variables in register allocation phase.

Every function call is converted into GFOR1K operations in the intermediate code, be-
cause each function is compiled as an individual thread.

In the intermeditate code, the task block code is surrounded by the TASK-BEGIN and
TASK-END code annotated with the type of control. These codes are directly translated
into the corresponding runtime assembly code in the code generation phase.

5.2 Extended Control Flow Graph
The EM-C compiler constructs the Control Flow Graph (CFG) as an intermidate data
structure. Our CFG is extended to introduce special edges associated with LFORK and
GFORK. In CFG, the following transformations are performed to optimize the program:

" Re-partitioning. - Maximizing the thread run length reduces the frequency of
saving and restoring context, and increases locality. We use the Dependence Set
algorithms[4] to recognize possible partitioning. The algorithm is modified for the
extended CFG because the program is represented by a control flow graph rather
than a data flow graph. When the nodes connected by a LFORK edge are in the same
dependence set of GFORK edges, these nodes can be executed in the same thread.

" Null thread elimination. - A null thread' is defined as a basic block which contains
no effective instructions except an LFORK operation to trigger other threads. For
example, suppose the fork operation in node A triggers the null thread of node B,
and B triggers C, then B can be eliminated by replacing the fork operation A as to
directly trigger C.

'This is the same as a Null Sequential Quatum in 14]
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5.3 Register Allocation
We use the register coloring algorithm for register allocation. In our execution model, the
live ranges of variables in concurrently executed nodes do not interface with each other.
Different spill locations must be assigned to these variables, however, because their order
of execution is unknown at compile time, and the live values of the variables are saved at
any thread boundary.

At the beginning of each thread, the destinations of INPUT are assigned to the operand
registers. Peep hole optimization may combine an instruction into dataflow matching if
possible. When dataflow matching is used only for synchronizing controls, a single live
value may be carried with the synchronization packet.

Code scheduling across basic blocks is not implemented in the current compiler.

6 Related Work
Eicken et. al. [101 presented Active Messages as an asynchronous communication mecha-
nism which directly invokes a user-level instruction sequence in the message. The perfor-
mance of Active Messages on CM-5 indicates that it takes a few tens of machine cycles
to create a thread in a different processor using hardware directly from the user program.
They proposed an extension of the C programming language, called Split-C[21, which
provides split-phase remote memory operations using Active Messages and can overlap
asynchronous communication with computation. Split-C also provides a global address
space. The major difference is that Split-C provides a set of operations for split-phase
assignment to allows computation and communication to be overlapped, rather than pro-
viding language constructs for multithreading as in the EM-C.

Recent works in dataflow research have adopted the explicit-switch thread. Culler[3]
proposed a software explicit-switch thread model, called a threaded abstract machine
(TAM) using Active Messages, which is similar to the EM-4 architecture. The TAM was
designed to compile the functional programming language Id90 into it. Although our
EM-C is designed for the EM-4 architecture, we believe that the basic concept of EM-C
can be applied to conventional high performance multiprocessors with a similar approach.

Jade [5) is a data-oriented language for parallelizing programs written in a serial, im-
perative language. It supports coarse-grain tasks which are augmented with high-level
data usage information. Its compiler and runtime systems use this information to syn-
chronize tasks. EM-C task blocks can be used for the same style of parallel programming.

7 Summary

In this paper, we introduced EM-C, a parallel extension of C designed for efficient parallel
programming in the EM-4 multiprocessor. The EM-4 has a dataflow mechanism, which is
extended to fine-grain remote memory access and is able to support very efficient multi-
threading. EM-C allows programmers to exploit and control parallelism, and to enhance
locality for optimizing parallel programs. It provides the notion of a global address space
for remote data references, and simple data distribution in that space. EM-C's task block
and parallel sections construct are used for multithreading to exploit medium-grain paral-
lelismn and to hide remote memory access latencies. The where and everywhere task block
constructs allow data-oriented threads of task blocks to execute depending on the data
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distribution in the global address space. We illustrated these language concepts with var-
ious sample programs. The EM-C programs are compiled into explicit-switch threads to
be invoked and synchromn1 d with the dataflow matching mechanism. The compiler opti-
mization eliminates redundant synchronizations and communications to generate optimal
code in the presence of explicit parallelism.
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Abstract: This paper presents an execution model for exploitation of fine-grain par-
allelism. It is described by means of an abstract machine, S-TAM, that offers flexibility
in the trade-off between static and dynamic methods for scheduling and allocation It is
based on multithreading as a means of providing flexible, compiler-controlled scheduling.
The allocation of processing resources is both static, requiring compile-time allocation of
a processor for each thread, and dynamic in the form of multiple, dynamically allocated
functional units in a processor.

Experimental results show that a system using mixed static and dynamic allocation
gives a performance which is comparable to that of a system based entirely on dynamic
allocation.

Keyword Codes: C.1.2; D.1.3
Keywords: Multiprocessors; Concurrent Programming

1 Introduction
Today the most common type of architecture for exploitation of very fine-grain parallelism
is the superscalar processor. Several researchers have studied the limitations of these
architectures ([9, 41) and proposed variations based, for instance, on speculative execution
as a means for achieving a higher degree of parallelism. It seems, however, as though the
degree of parallelism that can be found and exploited by these architectures is limited by
their inherently sequential execution model.

Another type of fine-grain parallel architecture is the VLIW (Very Long Instruction
Word) architecture. In contrast to a superscalar architecture, a VLIW architecture makes
use of static scheduling and allocation of processing resources, to exploit parallelism. Since
superscalar architectures are based on dynamic scheduling and allocation, the primary
difference between VLIW and superscalar execution lies in how and when scheduling and
allocation of processing resources are performed.

The chief disadvantage of dynamic scheduling, compared with static scheduling, is
the overhead in both time and hardware that is incurred by the scheduling mechanism.
Furthermore, dynamic scheduling often becomes local in the sense that it only considers
a small portion of a program at a time. On the other hand, dynamic scheduling is
more general than static scheduling, which is best suited for regular computations with
a statically determined control flow. For irregular computations, it is often difficult to
perform efficient static scheduling and allocation.
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Figure 1: An S-TAM processor.

This Daper presents an execution model for very fine-grain parallelism that constitutes
a new aud flexible trade-off with respect to static and dynamic methods for scheduling
and allocation. The execution model is described by means of an abstract machine called
S-TAM (Static Threaded Abstract Machine). Its name is chosen to reflect that some of
the underlying ideas are inspired by the TAM abstract machine [1]. For instance, one
important goal of S-TAM is to make scheduling and allocation explicit and visible to the
compiler.

The flexibility in scheduling offered by S-TAM comes primarily from the fact that it is
a multithreaded execution model, in which threads are dynamically scheduled in a data-
driven fashion, whereas the instructions constituting a thread are statically scheduled.
Threads are formed so as to avoid parallelism within threads, i.e. parallelism should be
expressed as parallelism between threads.

The flexibility in resource allocation comes from the fact that S-TAM is organized as
a number of statically allocated processors, consisting of dynamically allocated functional
units. The basis for the allocation is thus static, as each processor is assigned one or
several threads at compile-time. However, this allocation is not as critical as for a VLIW
architecture, and can be performed with a very simple allocation algorithm, owing to the
fact that each processor has several functional units to handle parallelism between threads
on the same processor.

2 S-TAM

A system based on S-TAM consists of a number of processing elements (PE), connected
via some interconnection network (see Figure 1). Each PE consists of some local memory
and an S-TAM processor with the following storage resources:

CM Code Memory
Holds threads of instructions and synchronization points.

RF Register file
A set of general purpose registers RO-Rn.

CB Continuation Buffer
A buffer holding thread continuation points in CM. A continuation point indicates an
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instruction or synchronization point from which execution of a thread may proceed.

BS Blocking Store
A memory holding blocked points in CM. A blocked point indicates an instruction
or synchronization point where execution of a thread has been blocked.

CT Current thread
Pointer to the currently executed instruction in CM. Functions as an ordinary pro-
gram counter.

A (CM,RF,CB,BS,CT) collection denotes an S-TAM processor with a single point of
execution. The registers in a register file can be accessed only by instructions stored in the
corresponding code memory, and are allocated globally for all threads in the code memory,
thereby allowing these threads to communicate via registers rather than messages.

Parallelism is introduced by the presence of multiple S-TAM processors, and by mul-
tiple functional units in a processor. In Figure 1 this is represented by multiple CT:s
served by a single CB and BS. The difference between the two forms of parallelism is
that threads are statically allocated to processors, but dynamically allocated to functional
units. This means that a thread may start executing on one functional unit until it
becomes suspended, and later resume execution on a different functional unit.

An S-TAM thread is a sequence of instructions from an instruction set, consisting
primarily of conventional instructions operating on register operands. There are also
instructions for memory operations, performed as split-phase transactions.

Communication between threads, and the associated synchronization, is embodied in
a SEND instruction. A SEND instruction and a synchronization point, represent a commu-
nication path between two threads:

Thl: Th2:

SEND RI,Th2.S1 - ADD S1,R2,R3

The SEND instruction creates and sends a message to the synchronization point (denoted
Si). When the message is received, the value is stored in the synchronization point, and
an acknowledgement message to the SEND instruction is generated as soon as the receiving
thread has read the value from the synchronization point.

For synchronization purposes, there is a state associated with each SEND instruc-
tion and synchronization point. A synchronization point can be in any of the states
BLOCKED, EMPTY or FULL, whereas an instruction can be either BLOCKED, UN-
ACK (UNACKnowledged) or ACK (ACKnowledged). A thread is executed sequentially
using the Current Thread pointer (CT) as a program counter. However, execution of
a thread cannot proceed beyond an EMPTY synchronization point or an UNACKnowl-
edged SEND instruction. In these cases, the currently executing thread is suspended and
placed in the Blocking Store (BS), and execution continues with some other thread from
the continuation buffer (CB). A thread is moved from BS to CB as soon as the processor
receives a message relating to the SEND instruction or synchronization point on which the
thread was suspended.
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Figure 2: Organization of an S-TAM system.

3 Organization of an S-TAM System
Figure 2(a) depicts a possible organization of an architecture based on the S-TAM exe-
cution model. This organization is similar to that of other parallel architectures, such as
iWarp [61, J-Machine [2] and *T [5]. The main difference lies in the granularity. As this
is meant to be a very fine-grained parallel architecture, the communication network and
the processing elements must be able to handle small messages with a low latency.

Each processing element (PE) has the following parts:

Execution Agent (EA): Implements the S-TAM execution model.

Memory Agent (MA): Serves as an interface to the memory system.

Communication Agent (CA): Performs message handling and routing.

Memory (M): Local memory associated with each processing element.

Memory is physically distributed in order to achieve good scalability. Whether the logical
organization of the memory should be a global shared address space or distributed local
address spaces is not directly implied by the organization of the architecture. Although
this is an important aspect, this question is not considered here. The reason is that neither
the organization nor the execution model represent a preference for one or the other.

The organization shown in Figure 2(b) has been used in the simulations described in
Section 5. It consists of 4 processors, sharing a single memory and memory agent. It is
expected that this organization could be realized as a single VLSI circuit, using a modern
CMOS technology.

4 Compiling for S-TAM

The process of compiling for a multithreaded execution model basically means transform-
ing a computation into a set of threads, each of which represents a separately schedulable
subcomputation. There are four main steps in compiling for S-TAM: Data flow graph
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generation, Clustering, Code generation, and Processor allocation. For the experiments
reported in Section 5, a compiler for semi-static data flow 181 has been used. Even though
the instruction set of S-TAM is tailored for this particular form of DFGs, it is general
enough to allow code generation from other forms of DFGs as well.

4.1 Clustering and Code Generation

The purpose of a clustering algorithm is to create clusters of fine-grain operations that
can be scheduled as sequential threads of instructions. Furthermore, the clustering should
minimize the synchronization overhead. For S-TAM it is important to use a clustering
algorithm which attempts to retain all of the fine-grain parallelism, as the execution of a
thread is entirely sequential. This is more important than creating long threads with a
minimum of synchronization overhead, even though these aspects are of interest as well.

When forming clusters for S-TAM, locality is of great importance, both because ex-
ploiting locality has the effect of reducing the number of synchronizations associated with
a thread and because locality implies dependency between operations, which prohibits
parallel execution. If operation A depends directly on the result of operation B, then, by
placing these operations in the same cluster, this locality in communication can be taken
advantage of, and it is guaranteed at the same time that, as a result of this dependency,
no parallelism is lost.

The purpose of the code generation phase is to create a sequence of S-TAM instructions
for each cluster. Because the clusters are sequential, this is basically a matter of generating
the necessary instructions for each DFG node in the cluster in the order they were added
to the cluster. In most cases, a cluster gives rise to a single thread. There are, however,
exceptions from this in conjunction with nodes which are non-strict in their inputs.

See [71 for a more comprehensive description of the clustering and code generation.

4.2 Processor and Storage Allocation

The last step in compilation for S-TAM consists of allocation of processing and storage
resources. Allocation of processing resources means allocating an S-TAM processor for
each thread, i.e. for a multiprocessor S-TAM, to decide which CM should hold a specific
thread. The significant aspect of this is that it is statically decided which processor should
execute a thread.

The storage allocation, which is performed after the processor allocation, concerns
the allocation of physical storage such as registers and synchronization points. This is
performed individually for each thread, under the assumption that each thread needs a
distinct set of registers. The storage allocation issues will not be discussed any further.
For the experiments and measurements presented in Section 5, a compiler and simulator
were used, which assume that a sufficient number of registers and synchronization points
are available to make it possible to allocate a distinct set for each thread.

The following describes a simple processor allocation strategy, based on knowing which
subcomputations (threads) may not be executed in parallel. It is guided by the data de-
pendencies between subcomputations. If there is a dependency, such that one subcompu-
tation depends on the result of another subcomputation, parallel execution is, in principle,
not possible. However, since a thread can communicate with other threads at any point
during its execution, two threads may be partly parallel. To handle this situation, the
processor allocation strategy used for S-TAM is based on the notion of overlap between
threads, which serves as a measure of the potential for parallel execution of the threads.
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Figure 3: Measuring overlap between threads.

In practice, there are two distinct cases for which the overlap between a pair of threads
must be defined. Figure 3(a) shows the case in which there exists a dependency between
two threads. In this case, the overlap between the threads is marked touratp, and is
measured as the number of instructions, before and after the synchronization, that can
execute in parallel. Figure 3(b) shows the case in which there is no dependency between
the threads. Deciding the potential for parallel execution in this case is obviously difficult,
but a conservative approach is used and the overlap is taken to be the length of the
shortest thread, i.e. min(l,, 12).

The goal of the processor allocation algorithm is to minimize the sum of the overlaps
between all threads allocated to a processor. It does this by adding threads one by one
to the processors, selecting the processor that gives the smallest total overlap. However,
given that communication between threads is associated with a cost which is likely to
increase with the distance, locality is desirable, i.e. even though there is a potential for
parallelism between two threads, it may be more efficient to execute both at the same
processor. This corresponds to accepting a certain amount of overlap between threads
on the same processor. This is represented by a threshold in the definition of the overlap
between two threads:

ov r a~ i t2 towlap, if tovriap > tthresh (a
overlap(t,,t2) = 0, otherwise (a)

overlap(ti, t2 ) = min(l,, 12) (b)

The overlap is thus set to 0 unless to,,wIp exceeds tthreh. The following is an algorithm for
allocation of processors based on this notion of overlap:

FOR each processor P,
randomly choose a thread, and assign it to Pn

END
FOR each remaining thread t

let proc.ovrlap(t, n) = E overlap(t, tk)
thEthreads on P.

assign t to the processor Pn with the smallest proc-ovrlap(t, n)
END
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This algorithm uses the overlap to select a processor on which a thread t should be
executed. For each processor P., overlap(t,tk) is computed for each thread th already
allocated to it. The sum of these overlaps, proc-overlap(t, n), is used as a measure of the
overlap between thread t and the processor P,. Thread t is then assigned to the processor
for which proc.overlap(t, n) is smallest.

5 Experimental Results
This section presents and discusses some experimental results that serve as an evalua-
tion of S-TAM. It is important to note that the results primarily concern the execution
model, and do not relate to a specific implementation. However, in addition to being an
evaluation of the execution model, the results also give important information concerning
implementation of S-TAM.

The experiments have been performed using the compilation strategy described in the
previous section. Two simulators have been used: an ideal simulator, and a simulator
that models the organization shown in Figure 2(b).

The ideal simulator has been used as a reference, and all execution times have been
normalized with respect to this simulator which has infinitely many, dynamically sched-
uled functional units. There are no overhead or latency associated with communication
and synchronization, and all instructions execute in one cycle.

The second simulator models a more realistic S-TAM system, with the following char-
acteristics:

e Deterministic routing between processors. All messages between two processors are
routed along the same communication links.

e One-cycle latency for EA-CA communication. Transferring a message generated by
the execution agent (EA) to the communication agent requires one cycle.

* One-cycle latency for CA-CA communication. Transferring messages between two
communication agents requires one cycle.

* Infinitely many registers and synchronization points. No actual allocation of regis-
ters or synchronization points is performed.

* One-cycle latency for local messages. Messages between threads on the same pro-
cessor have a latency of one cycle.

* One suspension without penalty per cycle. If a processor has multiple functional
units, one of these may suspend execution of a thread and continue the execution
of another thread within a single cycle.

* Single-cycle instruction execution. All instructions require one cycle to execute.

* One memory request per cycle. The memory system accepts only a single memory
request per cycle.

As the simulator is parameterized with respect to the number of functional units, it is
possible to simulate a range of different configurations. The number of processors can
also be varied from 1 to 4 simply by performing the processor allocation for the desired
number of processors. In the following, the configurations will be named PxFy, where x
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Program JPI P2 [P3 P4 10 P2F2 PlF4
F1 F1 F1 F1 1005'0195%[90% 100%J95% 1 90%

Isort 1.72 1.38 1.39 1.47 1.14 1.50 1.81 1.00 1.42 1.69
Convolution 2.11 1.63 1.50 1.52 1.23 1.74 2.19 1.06 1.69 2.11
Matmult 2.93 1.90 1.56 1.47 1.30 1.69 1.95 1.17 1.54 1.79
Matmult9 8.38 4.46 3.15 2.71 2.45 2.95 3.14 2.51 3.02 3.27
Find 3.17 2.17 1.86 1.75 1.47 1.95 2.31 1.34 1.93 2.23
Simple 8.09 4.23 3.06 2.46 2.35 3.03 3.19 2.34 3.00 3.36

Table 1: Relative Performance.

is the number of processors (1 ... 4) and y is the number of functional units per processor
(1 ... 4). For example, P2F4 denotes a configuration with 2 processors and 4 functional
units per processor.

5.1 Benchmarks

The following benchmarks have been used:

isort 1: Insertion sort applied to the list [20. . .1.

convolution 11 12: Convolution of two vectors, represented as lists. Applied to the
lists [1. .5) and [1. .15).

matmult ml m2: Multiplication of n x n matrices. Applied to matrices of size 9 x 9.

matmult9 ml m2: Multiplication of 9 x 9 matrices. Derived from the matmult benchmark
by unfolding the inner loop.

find p s: String search program. Searches for pattern p in string s. "230501" is used
as pattern .earched for in string "12123454512316789". The character '01 in the
pattern functions as a wildcard character, matching any sequence of characters of
at least length 1.

simple: Hydrodynamics simulation of the flow velocity for a fluid in a cross-section of a
sphere.

5.2 Results

Table 1 shows the relative performance of a number of S-TAM configurations with varying
number of processors and functional units. For P2F2 and P1F4 three different numbers
are given that corresponds to different memory system behavior. The execution time has
been measured for a memory system with hit-rates of 100%, 95% and 90%. A cache hit is
assumed to have a latency of I cycle, and cache misses have a latency which is randomly
distributed between 20 and 100 cycles.

The first four columns show the performance of statically allocated configurations, i.e.
configurations with varying number of processors but only a single functional unit per
processor. A comparison of these configurations indicates how well static allocation scales
when the number of processors is increased.
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The find and matmult benchmarks scale reasonably well up to 3 processors, whereas
the two smallest ones, isort and convolution, scale poorly and, in fact, reach a point at
which negative speed-up is obtained. The situation is better for matmult9 and simple,
which is explained by the higher degree of parallelism (8-9 with ideal execution) in these
programs.

It can be seen from the results presented here that good scalability under static allo-
cation requires that the parallelism of the computation is larger than the number of pro-
cessors in the architecture. Efficient exploitation of lower degrees of parallelism requires
either more elaborate allocation methods or the dynamic allocation used in configurations
with multiple functional units per processor.

A comparison of the P4F1, P2F2 and PIF4 configurations, which represent different
trade-offs between static and dynamic allocation, shows that execution time for PAF1
is 25-45% higher than PIF4 for the benchmarks that have the lowest parallelism. rJor
matmult9 and simple, the difference is smaller. However the difference between PlF4
and P2F2 is generally smaller than the difference between PIF4 and P4F1, showing that
it is not necessary to resort to completely dynamic allocation to get good performance.
In fact, for the larger benchmarks P2F2 gives as good, or even better, performance than
P1F4.

An important aspect of a multithreaded execution model is its potential for hiding
long latencies in communication between processors and memory. Table 1 shows the
effect that varying memory system latencies has on the execution time for P2F2 and
PIF4. For 95% hit-rate, the relative increase in execution time ranges from 20%, for
the benchmarks with the highest degree of parallelism, up to 58%. The corresponding
numbers for 90% hit-rate are 30% up to 100%. The variation between configurations
with the same total number of functional units is small, indicating that the capability to
tolerate these latencies is relatively independent of whether static or dynamic allocation
is used.

6 Related Work
Many aspects of S-TAM are similar to an execution model called Processor Coupling,
proposed by Keckler and Daily 131. Processor coupling attempts to combine static and
dynamic scheduling to efficiently exploit fine-grain parallelism in a multithreaded exe-
cution model. In processor coupling, a thread can be viewed as a sequence of VLIW
instructions. The processing resources for an instruction are statically allocated among
a number of functional units organized into clusters. Such a cluster is comparable to an
S-TAM processor with multiple functional units.

Keckler and Dally reports a number of experimental results from simulations of a
processor implementing processor coupling. Regarding such as issues as functional unit
utilization and memory system latency, the numbers are similar to the corresponding
numbers for S-TAM.

7 Conclusions

S-TAM is an abstract machine that offers a flexible trade-off between static and dynamic
methods for scheduling and allocation. It is based on multithreading as a means of
providing flexibility in scheduling. The dynamic scheduling is based on mechanisms that
can be implemented with relatively simple hardware. Flexibility in allocation of processing
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resources is achieved by multiple, statically allocated, processors consisting of multiple,
dynamically allocated, functional units.

Experimental results show that a system using mixed static and dynamic allocation
in this way gives a performance which is comparable to that of a system based entirely on
dynamic allocation. Furthermore, these results are obtained using a very simple algorithm
for processor allocation, which does not rely on any global analysis of programs.

Although the overall results are encouraging, a more detailed analysis of an actual
implementation is needed in order to give definite results regarding the usefulness of the
S-TAM approach. This would make a detailed comparison between S-TAM, superscalar
and VLIW architectures possible. For instance, it is not yet clear whether the cost of an
S-TAM implementation is comparable to a superscalar processor with the same number
of functional units.
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Abstract: By the end of the decade, as VLSI integration levels continue to increase,
building a multiprocessor system on a single chip will become feasible. In this paper, we
propose to analyze the tradeoffs involved in designing such a chip, and specifically address
whether to allocate available chip area to larger caches or to large numbers of processors.
Using the dimensions of the Alpha 21064 microprocessor as a basis, we determine several
candidate configurations which vary in cache size and number of processors, and evaluate
them in terms of both processing power and cycle time. We then investigate fine tuning
the architecture in order to further improve performance, by trading off the number of
processors for a larger TLB size. Our results show that for a coarse-grain execution
environment, adding processors at the expense of cache size improves performance up
to a point. We then show that increasing TLB size at the expense of the number of
processors can further improve performance.

Keyword Codes: C.1.2; C.4; C.5.4
Keywords: Multiprocessors; Performance of Systems; VLSI Systems

1 Introduction

VLSI integration levels continue to rapidly increase, so much so that it has been predicted
that by the end of the decade, a one inch square chip with 0.25 micron technology will be
available[17]. At this level of integration, it will become possible to build a multiprocessor
system with several of today's microprocessors on a single chip. Microprocessor designers
will have a wide design space to explore, and many tradeoffs to make between processor
architecture, cache hierarchy and TLB organization, interconnect strategies, and incor-
porating multiple processors on the chip. In this paper, we begin to address the design
of such high integration microprocessor architectures. In particular, we evaluate perfor-
mance tradeoffs in allocating chip resources to larger caches versus more processors. We
also investigate how elements of the processor architecture (in particular TLB size) affect
design decisions.

The rest of this paper is organized as follows. First we discuss the multiprocessor or-
ganization and establish performance metrics. We then calculate fixed area overheads for
I/O logic/pads and the system bus. Next, we determine candidate system organizations
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and discuss our modeling approach. We then determine processing power, cycle time, and
total system performance for each configuration. Lastly, we present our conclusions and
discuss possible future extensions tk our work.

2 System Organization and Performance Metrics

The overall architecture that we consider is a shared memory multiprocessor system con-
taining n processors, each of which has a private cache. A system bus is used as the
interconnect structure between the caches and the main memory, which may consist of
several interleaved modules. With the technology predicted to be available at the end of
this decade, designers will be able to place this entire structure (for a limited number of
processors and with the exception of the main memory DRAMs), onto a single chip'.

The execution environment that we assume is a coarse-grain, throughput-oriented,
parallel environment. The system might be for example a server running Unix with
many X terminals connected to it. Each of these X sessions runs separate user tasks
and applications, and shares primarily operating system code and data structures and
common application code. Thus the amount of shared data is minimal, and the vast
majority of the time the processors are accessing private data.

The performance metric that we wish to maximize is total system performance which
can be expressed as processing power/cycle time where processing power is defined by
n/(CPI • instr). Here n is the number of processors in the system, CPI is the cycles
per instruction rating for each processor, and instr is the number of instructions executed
in the running of the program. This last parameter is a function of the instruction set
architecture. Since this paper does not focus on insiruction set architecture design issues,
we eliminate this term and thus obtain n/CPI for pcocessing power.

3 Tradeoffs Between Cache Size and Number of
Processors and the Effect of TLB Size

Having established the general system organization, execution model, and performance
evaluation criteria, we now examine some of the tradeoffs involved in designing single
chip multiprocessors. We consider the problem of whether to use the available chip area
for enlarging the caches or for adding additional processors. We focus on these two
architectural parameters (the size of the caches and the number of processors) since they
have such a great impact on performance. Once we have made area tradeoffs for these
parameters and have a region of the design space narrowed down, we can then address
parameters which have less impact on performance. In this paper, we address the size of
the TLB.

The physical aspects of our study are based on the dimensions of the Alpha 21064
microprocessor[5, 13). We scale the processor core and cache dimensions of the 21064
to 0.25 micron technology, and assume the use of a one inch square die. We then use
this data to obtain candidate multiprocessor configurations which vary in cache size and
number of processors.

'An experimental version of such a chip has already been designed and fabricated in 0.30 micron
technology[10].



27

3.1 Bus and I/O Overhead
We use an aggressive bus design, consisting of separate 64-bit wide address and 128-bit
wide data buses distributed to all the caches as well as the main memory controller on
the chip. Based on previous implementations of bus-based multiprocessors, an aggressive
bus design is necessary for a moderately large (8-16) number of processors. We allocate
roughly 20% of the chip area for the bus, external interface, and I/O pads. Based on
empirical measurements, approximately 17% of the area of the 21064 is allocated to
external control and I/O pads. Due to the large number of I/O and power signals expected
on our chip, and because I/O pad size may not scale as well as transistor sizes, we assume
the same overhead on our chip. To determine the area consumed by the bus, we scale
the dimensions of the second layer of metal (Metal 2) on the Alpha chip, since this is the
wider of two metal layers used for general signal distribution. (The third layer is primarily
used for power and clock distribution.) Metal 2 has a width of 0.75prm and a pitch of
2.625pm. We consider two means of scaling for comparison purposes: ideal scaling and
V1 scaling where S, is the scaling factor. The latter has been suggested in [1] in order
to reduce propagation delays as technology is scaled. In our case, since we are scaling a
0.75 micron technology to 0.25 microns, S, has a value of 3. We assume an additional 15
signals beyond those for address and data for arbitration, signaling of operations on the
bus, and acknowledgements. Thus our total bus signal count is 207. We obtain for the
width of the bus using ideal scaling (0.75.10-3 + 2.625. 10-s) 207/3 = 0.23mm and using
V3 scaling (0.75 .10-3 + 2.625 .10-3). 207/v"3 = 0.40mm.

Assuming the bus runs almost the entire length (20mm) of the chip, it consumes 0.7%
and 1.2% of the chip area with ideal and VK scaling, respectively. Scaling the metal
dimensions for the bus by V instead of ideally has a negligible impact on the overall
chip area. Adding the area for I/O gives us 17.7% and 18.2% for ideal and V'3 , scaling,
respectively. In order to account for additional area lost due to the routing problems
inherent in such a wide bus, we boost our overall figure for the area consumed by the 1/O
interface and bus to 20%.

3.2 Candidate Configurations

To determine candidate configurations, we proceed as follows. First, we empirically de-
termine the area of the caches (16kB total) and processor core (the chip minus the caches
and I/O pads) of the 21064. We scale (using ideal scaling) these dimensions to 0.25 mi-
cron technology, and then determine the fraction of a 0.25 micron, one inch square die
consumed by the scaled processor and caches. The area of 32kB, 64kB, and larger caches
is determined by using multiples of the base 16kB cache area. This is to a first order,
consistent with area models described in [14, 15], especially for large caches where the
size of the data area dominates the overall size.

We combine the dimensions of these caches with the dimension of the processor core to
construct candidate processor/cache organizations. We then determine how many of these
can be placed on the chip. For smaller configurations, we determine this by dividing 80%
of the total chip area by the processor/cache area. As the number of processors grows, we
assume more area overhead (a few additional percent of the total chip area) is required
for routing.

Based on this method, we obtain the candidate system organizations shown in Table
1. These provide a good range of design points for an initial analysis. Once we have
analyzed these design points, we can make further refinements to arrive at alternative
organizations.
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Configuration Number of Processors Cache Size
1 7 256kB
2 11 128kB
3 16 64kB
4 20 32kB

Table 1: Candidate System Organizations

Cache Size Miss Rate Misses Causing Displacements Displacement Buffer Hits
32kB 2.05% 23.44% 3.96%
64kB 1.33% 27.54% 3.92%

L 128kB 0.89% 30.85% 4.37%

256kB 0.55% 33.91% 3.74%

Table 2: Cache Simulation Results

We choose to bound the cache sizes at 256kB and 32kB. For our benchmarks, caches
larger than 256kB produce diminishing returns in terms of miss rate; further increasing
the size of the cache beyond 256kB at the expense of the number of processors clearly
results in worse overall performance. Caches of size less than 32kB on the other hand,
have high enough miss rates to saturate even a very wide data bus. Even the 256kB
and 32kB caches are suspect in terms of these criteria; we include them in order to avoid
inadvertently excluding the optimum configuration.

3.3 Modeling Approach

Due to our execution model assumptions, we use uniprocessor trace driven simulation to
analyze the various cache options, and apply the results to our multiprocessor analyti-
cal models. The traces we use are of the SPEC KENBUS program running on an i486
processor under the MACH 3.0 operating system. These traces are from the BYU Ad-
dress Collection Hardware (BACH) system[8] and include both user and operating system
references. Our trace length is approximately 80 million references, and we ignore cold
start effects. The results of our simulations are given in Table 2. Besides miss rate, we
also gather information on the fraction of misses that cause a dirty block to be displaced
from the cache, and the fraction of cache misses that hit in the four entry displacement
buffer. This buffer operates as a FIFO and holds recently displaced blocks to reduce
thrashing effects in our direct-mapped caches as described in [11]; our hit rate results are
in agreement with this previ.,us work.

The results from Table 2 are used as inputs to analytical models of our candidate
organizations. We use Mean-Value-Analysis (MVA), an analytical modeling technique
which has been used extensively to study shared memory multiprocessors[4, 18, 19]. Our
model assumptions are given in Table 3. CPI,,., is the CPI rate of the processor with no
cache misses. Our block size choice has been shown in [6] to be a reasonable choice for
the KENBUS benchmark for caches in our range. The bus penalties assume that a "dead
cycle" is needed to switch bus masters to avoid driver clashing.

AL
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Parameter Value
CPIwoc 1.5
% loads 25%
% stores 10%

Block size 32 bytes
Disp buffer hit penalty 2 cycles

Bus read penalty 2 cycles
Bus writeback penalty 3 cycles

Bus data return penalty 3 cycles
Bus arbitration time 2 cycles
Memory access time 15 cycles

Table 3: MVA Model Parameters
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Figure 1: Average Bus Waiting Time and Processing Power for Candidate Configurations

3.4 Processing Power Results

Figure I shows the average bus waiting time and processing power for each of the candi-
date organizations. The larger cache (fewer processor) configurations as expected display
very low waiting times, while the waiting time increases quickly for the smaller cache
configurations. Thus we conclude that up to a point, adding processors at the expense of
cache size is a good tradeoff. We see however that the 20 processor, 32kB cache configu-
ration is clearly not a good design point to consider. The drop in processing power from
the 16 processor, 64kB configuration is due to system bus saturation, and the resulting
increase in waiting time cancels out the benefits received from adding processors.

The 16 processor, 64kB design point is suspect as well, although it provides the highest
processing power. The increase in bus waiting time in this configuration as compared to
the 11 processor, 128kB configuration suggests that this design point may not be optimal.
It may be beneficial to reduce the number of processors in order to alter the processor
organization. One option would be to increase the size of each processor's TLB while
reducing the number of processors by an amount commensurate with the resulting area
increase. This would result in fewer cache misses and a subsequent reduction in bus
waiting time. In order to assess this impact, we use the results of area models developed
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SCache Size Miss Rate Misses Causing Displacements Displacement Buffer Hits
32kB 1.72% 24.24% 4.00%
64kB 1.12% 29.50% 4.34%
128kB 0.77% 33.27% 4.68%
256kB 0.49% 35.90% 3.94%

Table 4: Results of Cache Simulations with 512 Entry TLB

for TLBs and caches[14, 15] to assess the relative area of a 32 entry TLB (used in the i486
from which the traces were gathered) and a 64kB cache. From [15], these area estimates
are roughly 2500 and 375000 rbes (register bit equivalents), respectively. A 512 entry TLB
costs roughly 24000 rbes. Thus, the cost incurred in increasing the TLB from 32 entries
to 512 entries is roughly 21500 rbes per processor. For a 15 processor configuration, this
amounts to 322500 rbe or less than the cost of one 64kB cache. Thus, we see that by
removing one processor and its cache, we can increase the TLB in each of the remaining
15 processors to 512 entries. This should reduce the amount of TLB misses by over 50%
from that of a 32 entry TLB[3].

In order to get a lower bound on the impact of this architectural change on perfor-
mance, we use a technique called trace modification to conservatively modify the trace to
emulate a trace taken from a processor with a 512 entry TLB. To accomplish this, we
use a program that marks the TLB misses in the trace[7]. We then make a conservative
estimate as to the number of memory references in the TLB miss code. Our estimate is
35 references, a low estimate based on results of Mach TLB miss behavior[16]. We then
insert a filtering program into our simulator that causes the simulator to ignore every
other TLB miss in the trace. If a second TLB miss is encountered within 35 references of
a filtered TLB miss, we filter it out as well since it results from the first TLB miss. Table
4 shows the results with the larger TLB. Comparing this table with Table 2, we see that
for each cache configuration, the miss rate is lower with the larger TLB as expected.

We now use this data to evaluate the impact the larger TLB has on the bus waiting
time. We look at various design points for the 64kB cache, with the number of processors
ranging from 12 to 16. The larger TLB has a significant effect on the average bus waiting
time, reducing it by 17-19%. When viewed from the perspective of equivalent multipro-
cessor configurations, that is, the number of processors with the larger TLB is one less
than that with the 32 entry TLB, the impact is even greater, around a 28% reduction.
Looking at these equivalent configurations in terms of processing power (Figure 2), we see
that for the smaller configurations, those with the smaller TLB may still provide the best
design points. However, we see that the 14 processor, 512 entry TLB and the 15 processor,
32 entry TLB configurations have roughly equivalent performance, and the 15 processor,

512 entry TLB configuration outperforms the 16 processor, 32 entry TLB configuration.
Because we have obtained a lower bound on the increase in performance due to enlarging
the TLB, the difference in performance may actually be larger than that shown.

3.5 Cycle Time Results
To examine cache access times, we make use of the model developed in [20] which is
based on a 0.8 micron, 5V process. We use a voltage of 3.3V for our analysis, and
scale the capacitance, resistance, and current parameters of this model to produce a 0.25
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Figure 3: Cache Access Times for Various Sizes and Geometries

micron technology model2 . We examine 4 (the same as the 21064), 8, and 16 subarray
(SA) caches. Our results (Figure 3) indicate that caches larger than 64kB require more
aggressive geometric design to achieve reasonable cycle times. This may result in more
area overhead and less layout flexibility.

We now examine the effects of the number of processor nodes on bus performance.
We assume equal space loading and since the total propagation delay is longer than
the driver rise time, we use transmission line analysis. The loaded propagation delay of a
transmission line is[2] T.o /1 + CD/CO where To and Co are the unloaded transmission line
propagation delay and capacitance, respectively, and CD is the distributed capacitance
due to each processor node. CD can be expressed as .N all where CN is the node
capacitance, s is the rumber of line segments (one less than the number of nodes), and I
is the length of the bus (20mm in our example). Following [21, we use CN = 5fF, Co =
2pF/cm, and To = 0.067ns/cm, and obtain the results shown in Figure 4. We conclude
that shared buses can still achieve good cycle time performance for moderate numbers of
processors. However, to achieve aggressive clock rates with large numbers of processors,

2vVe note that these models are highly dependent on technology parameters, and thus our method
should only be used to study general trends and not exact cycle time analysis.
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Figure 4: Bus Propagation Delay Variation with Number of Processors

Configuration PP Cycle Time Total System Performance
(Proc, Cache, TLB) Cache Bus Cache Bus

Constrained Constrained Constrained Constrained
7, 256kB, 32 entry 1.00 1.00 1.00 1.00 1.00
11, 128kB, 32 entry 1.47 0.80 1.28 1.84 1.15
15, 64kB, 512 entry 1.85 0.68 1.52 2.72 1.22
16, 64kB, 32 entry 1.84 0.68 1.57 2.71 1.17

Table 5: Performance Data for Candidate Configurations

interconnect alternatives such as ring-based schemes[9) need to be considered.

3.6 Overall Performance

We now bring together the processing power and cycle time results and compare the overall
performance of our candidate configurations. We use the 7 processor, 256kB configuration
as our base system (and thus assign it unity performance values), and calculate processing
power, cycle time, and total system performance for the other configurations relative to
this organization. We look at two different cycle time scenarios: a cache constrained cycle
time chip, and a bus constrained cycle time chip. In the former, the cache access time
determines the cycle time of the chip; in the latter, the bus propagation delay determines
this.

Table 5 shows the relative processing power (PP), cycle time, and total system perfor-
mance for each of the candidate configurations. Due to their superior processing power
performance, the 15 and 16 processor configurations achieve the best overall performance
in both the cache and bus constrained cases. The 15 processor configuration is overall
the best choice, as it provides the highest processing power, and an equal or faster cycle
time than the 16 processor configuration. We note, however, that for a bus constrained
cycle time chip, the performance of the 11 processor configuration closely matches that of
the 15 and 16 processor configurations. For applications that consume more of the cache,
this configuration may be the best choice. If an even number of processors (or a power
of two) is more beneficial for the application software, then the number of processors can
be reduced accordingly. This may require the designer to allocate more area to TLBs,
interconnect, or other resources.
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4 Conclusions and Future Work

The complexity of microprocessor design is growing rapidly as VLSI integration levels
continue to increase. With the technology expected to be available at the end of this
decade, microprocessor architects will be faced with a wide range of design decisions.
An analysis of tradeoffs between the size of the caches and the number of processors in
the system was presented. Our results show that trading off cache size for the number
of processors improves performance up to the point of bus saturation. At this point,
alternatives such as reducing the number of processors in order to increase TLB size,
need to be considered in order to arrive at the optimal design point.

This work can be extended in several different ways. First of all, we assumed an in-
dependent execution model, whereby processors are accessing private code and data and
negligible sharing takes place. We also looked at a single benchmark program. Examining
the effect of a wider range of execution models (e.g., fine-grain parallel processing) and
application programs on the design choices made would be insightful. Secondly, an exam-
ination of the sensitivity of our results to our model parameters (such as memory access
time) should be made. Lastly, we only considered a single level of cache hierarchy. Multi-
level cache hierarchies can be examined as well. The incorporation of multiple processors
on a chip allows the designer to consider other cache options, such as private first level
caches and multiported second level caches shared by two or more processors. Such an
arrangement may make more efficient use of the available chip area than a conventional
organization, and thus should be evaluated as well.
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Abstract: Multithreaded architectures hold many promises: the exploitation of intra-thread
locality and the latency tolerance of multithreaded synchronization can result in a more efficient
processor utilization and higher scalability. The challenge for a code generation scheme is to
make effective use of the underlying hardware by generating large threads with a large degree
of internal locality without limiting the program level parallelism. Top-down code generation,
where threads are created directly from the compiler's intermediate form, is effective at creating
a relatively large thread. However, having only a limited view of the code at any one time
limits the thread size. These top-down generated threads can therefore be optimized by global,
bottom-up optimization techniques. In this paper, we present such bottom-up optimizations and
evaluate their effectiveness in terms of overall performance and specific thread characteristics
such as size, length, instruction level parallelism, number of inputs and synchronization costs.
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1 Introduction

Multithreading has been proposed as an execution model for large scale parallel machines.
The multithreaded architectures are based on the execution of threads of sequential code
which are asynchronously scheduled based on the availability of data. This model relies
on each processor being endowed, at any given time, with a number of ready-to-execute
threads to switch amongst them at relatively cheap cost. The objective is to mask the
late-icies of remote references and processor communication with useful computation and
thi.i yielding high processor utilization. In many respects, the multithreaded model can
be seen as combining the advantages of both the von Neumann and dataflow models:
efficient exploitation of instruction level locality of the former and the latency tolerance
and efficient synchronization of the later.

Thread behavior is determined by the firing rule. In a strict firing rule, all the inputs
necessary to execute a thread to completion are required before the execution begins. On
the other hand, a non-strict firing rule allows a thread to start executing when some of its
inputs are available. In the latter case, threads can become larger, but the architecture
must handle threads that block, with greater hardware complexity using pools of "waiting"
and "ready" threads; examples include the HEP (11 and Tera machines [2]. The strict
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firing can be efficiently implemented by a matching mechanism using explicit token storage
and presence bits; examples include MIT/Motorola Monsoon [3] and *T [4], and the ETL
EM-4 and EM-5 [5].

A challenge lies in generating code that can effectively utilize the resources of multi-
threaded machines. There is a strong relationship between the design of a multithreaded
processor and the code generation strategies, especially since the multithreaded processor
affords a wide array of design parameters such as hardware support for synchronization
and matching, register files, code and data caches, multiple functional units, direct feed-
back loops within a processing element and vector support. Machine design can benefit
from careful quantitative analysis of different code generation schemes. The goal for
most code generation schemes for nonblocking threads is to generate as large a thread as
possible [6], on the premise that the thread is not going to be too large, due to several
constraints imposed by the execution model. Two approaches to thread generation have
been proposed: the bottom up method [7, 8, 9, 10] starts with a fine-grain dataflow graph
and then coalesce instructions into clusters (threads), the top down method [11, 12, 131
generates threads directly from the compiler's intermediate data dependence graph form.
In this study, we have combined the two approaches in which we initially generate threads
top-down and then optimize these threads via bottom-up method. The top down design
which suffers from working on one section of code at a time limits the thread size; on the
other hand, the bottom up approach, with its need to be conservative, suffers from lack
of knowledge of program structures thereby limiting the thread size.

In this paper, we compare the performance of our hybrid scheme with a top-down only
scheme and measure the code characteristics and run-time performance. The remainder of
this paper details the hybrid code generation scheme and the measurements and analysis
of their execution. Due to space limitations, related work is not discussed in this paper.
The reader is referred to [14, 15] for some background. In Section 2, we describe the code
generation scheme. The performance evaluation is described in Section 3. Results are
discussed in Section 4.

2 Thread Generation and Optimizations

In this section we describe the computation model underlying thread execution (section
2.1) and code generation (section 2.2). In Section 2.3 we describe the various optimizations
techniques.

2.1 The Model of Computation
In our model, threads execute strictly, that is, a thread is enabled only when all the input
tokens to the thread are available. Once it starts executing, it runs to completion without
blocking and with a bounded execution time. This implies that an instruction that issues
a split-phase memory request cannot be in the same thread as the instructions that use the
value returned by the split-phase read. However, conditionals and simple loops can reside
within a thread. The instructions within a thread are RISC-style instructions operating
on registers. Input data to a thread is available in input registers which are read-only. The
output data from a thread is written to output registers which are write-only. The order
of instruction execution within a thread is constrained only by true data dependencies
(dataflow dependencies) and therefore instruction level parallelism can be easily exploited
by superscalar or VLIW processor. The construction of threads is guided by the following
objectives: (1) Minimize synchronization overhead; (2) Maximize intra-thread locality; (3)



39

Threads are nonblocking; and (4) Preserve functional and loop parallelism in programs.
The first two objectives seem to call for very large threads that would maximize the
locality within a thread and decrease the relative effect of synchronization overhead. The
thread size, however, is limited by the last two objectives. In fact, it was reported in 1101
that blind efforts to increase the thread size, even when they satisfy the nonblocking and
parallelism objectives, can result in a decrease in overall performance. Larger threads
tend to have larger number of inputs which can result in a larger input latency (input
latency, in this paper, refers to the tinic delay between the arrival of the first input to a
thread instance and that of the last input, at which time the thread can start executing
[161).

2.2 Top Down Code Generation

Sisal is a pure, first order, functional programming language with loops and arrays. We
have designed a Sisal compiler for multitbreaded/medium-grain dataflow machines by
targeting to machine independent dataflow clusters (MIDC). Sisal programs are initially
compiled into a functional, block-structured, acyclic, data dependence graph form, called
IFI, which closely follows the source code. The functional semantics of IFI prohibits the
expression of copy-avoiding optimizations.

IF2, an extension of IFI, allows operations that explicitly allocate and manipulate
memory in a machine independent way through the use of buffers. A buffer comprises of
a buffer pointer into a contiguous block of memory and an element descriptor that defines
the constituent type. All scalar values are operated by value and therefore copied to
wherever they are needed. On the other hand, all of the fanout edges of a structured type
are assumed to reference the same buffer; that is, each edge is not assumed to represent
a distinct copy of the data. IF2 edges are augmented with pragmas to indicate when an
operation such as "update-in-place" can be done safely which dramatically improve the
run time performance of the system.

The top down cluster generation process transforms IF2 into a flat MIDC where the
nodes are clusters of straight line von Neumann code, and the edges represent data paths.
Data travelling through the edges are tagged with an activation name, which can be
interpreted as a stack frame pointer as in 117] or as a color in a classical dataflow sense.

The first step in the IF2 to MIDC translation process is the graph analysis and splitting
phase. This phase breaks up the hierarchical, complex IF2 graphs so that threads can
be generated. Threads terminate at control graph interfaces for loops and conditionals,
and at nodes for which the execution time is not statically determinable. For instance,
a function call does not complete in fixed time, neither does a memory access. Terminal
nodes are identified and the IF2 graphs are split along this seam.

A function call is translated in code that connects the call site to the function interface,
where the input values and return contexts are given a new activation name. The return
contexts combine the caller's activation name and the return destination, and are tagged
(as are the input values) with the new activation name. For an if-then-else graph, code
for the then and else graphs is generated, and their inputs are wired up using conditional
outputs. Iterative loops with loop carried dependences and termination tests, contain four
1F2 subgraphs: initialize, test, body and returns. The returns graph produces the results
of the loop. They are generated and connected sequentially, such that activation names
and other resources for these loops can be kept to a minimum. Forall loops with data
independent body graphs consist of a generator, a body, and a returns IF2 graphs. They
are generated so that all parallelism in these loops can be exploited including out-of-order
reduction. This is valid as Sisal reduction operators are commutative and associative.
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Figure 1: Purdue benchmark 4: Sisal code and MIDC graph

2.3 Bottom-up Optimizations
Even though the IF2 optimizer performs an extensive set of optimizations at the IF2 level
including many traditional optimizations techniques such as function in-lining, the thread
generation creates opportunities for more optimizations. We have applied optimizations
at both the intra-thread and inter-thread levels. These optimizations are by no means
exhaustive, with many more techniques that can be applied further. However, they do
demonstrate its effectiveness.
Local Optimizations. These are traditional compiler optimizations whose main purpose
is to reduce the number of instructions in a thread. They include: Local dead code
elimination, Constant folding/copy propagation, Redundant instruction eliminations and
Instruction scheduling to exploit the instruction level parallelism which is accomplished
by ranking instructions according to dependencies such that dependent instructions are
as far from each other as possible. The data and control flow representation allows this
to be accomplished relatively easily.
Global Optimizations. The objectives of these optimizations are threefold: (1) Re-
duce the amount of data communication among threads; (2) Increase the thread size
without limiting inter-thread parallelism; (3) Reduce the total number of threads. These
optimizations consist of:

"* Global dead code and dead edge elimination: typically applied after other global
optimizations which could reduce the arcs or even the entire thread.

"* Global copy propagation/constant folding: works to reduce unnecessary token traffic
by bypassing intermediate threads.

" Merging: operations attempt to form larger threads by combining two neighboring
ones while preserving the semantics of strict execution. This results in reduced
synchronization cost. The merge up/merge down phases have been described in
17] and in [10]. In order to ensure that functional parallelism is preserved and
bounded thread execution time is retained, merging is not performed across: remote
memory access operations, function call interface and the generation of parallel loop
iterations.

"* Redundant arc elimination: opportunities typically arise after merging operation
when arcs carrying the same data could be eliminated.

Even though the local optimizations could be performed during the thread generation, we
have performed both local and global optimizations as a separate bottom-up pass which

L mmmmmmn mmmm mm immmmmmm
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Figure 2: MIDC thread code for Purdue benchmark 4

does extensive graph traversal and analysis. To support these operations, the optimizer
pass reads MIDC and internally builds a mini-dataflow graph for each thread along with
the global inter-thread interconnections. At this point, we have the complete, equivalent
dataflow graph that a pure bottom-up compiler would generate but retains the additional
top-down structural informations. When the optimized code is generated, each thread is
generated from these mini-dataflow graphs. The global view enables various optimization
steps to take place and enable redrawing of "boundaries" to easily recast threads.

A simple Sisal source and its compiled, optimized MIDC code is shown in Figures 1 and
2. Each node in MIDC has a header followed by the thread of instructions. The header
has the form "N n r i < destination list >" where n specifies the unique thread number,
r the number of registers the thread uses, and i specifies the number of inputs1 . Each
destination in the destination list corresponds to an output port to which the result is sent.
The example code is taken from Purdue benchmark 4 which inverts each nonzero element
of an array and and sums them. Figure I shows the thread level graph descriptions. Nodes
I and 2 are the main function input and output interfaces, respectively. Node 100 reads
the structure pointer and size information. Node 101 is the loop initializer/generator.
Node 102 and 103 comprises the loop body and Node 104 handles the array reduction.

3 Evaluation

In this section we evaluate the dynamic properties of our top-down code after applying
various bottom-up optimizations and using a multi-threaded machine simulator. The
following set of dynamic intra-thread statistics have been collected: (1) S,: average thread

1Complete details of the MIDC syntax are described in [15].
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Linpack Purdue Loops Average

n o local full no local full no local full no local full
S o 9.50 8.73 7.83 12.52 11n85 11o08 23.09 21.01 19.71 14.73 13.66 12.52
Sý 2.47 2.47 2.48 2.99 2.98 3.09 3.69 3.63 3.92 3.07 3.05 3.17
11 3.70 3.45 3.01 4.44 4.24 3.67 7.08 6.68 5.48 4.99 4.73 3.98
Input 4.88 4.88 3.73 5.78 5.78 4.45 12.16 12.16 9.63 7.29 7.29 5.59
MPI 0.44 047 0.40 0.46 0.49 0.40 0.51 0.56 0.47 0.48 0.52 0.43

Table 1: Intra-Thread Characteristics

size; (2) S.: average critical path length of threads (in instructions; (3) H1: average
internal parallelism of threads (H = -s); (4) Inputs: average number of inputs of threads;
(5) MPI: number of matches (synchronizations) per instruction (computed by dividing
the total number of matches by the total number of instructions executed).

Also, the following set of inter-thread (program-wide) statistics have been collected:
(1) Matches: total number of matches performed; (2) Instructions: total number of in-
structions executed; (3) Threads: total number of threads executed; and (4) CPL: critical
path length of programs (in threads). Values of these inter-thread parameters are pre-
sented in normalized form with respect to the un-optimized code.

The set of benchmarks includes: Lawrence Livermore Loops (LL 1 to 24), Purdue
benchmarks (PB 1 to 15), and several Linpack benchmarks (LB). We use three levels
of optimization: (1) No optimization: code generated by the MIDC compiler; (2) Local
optimization: only at the intra-thread level; and (3) Full optimization: both intra-thread
and global optimizations.

3.1 Intra-thread Results

Table 1 shows the thread characteristics for the three classes of bpnchmarks and the
cumulative of all the benchmarks. The values shown are weighted avwrage values for a
given class of benchmarks.
Thread Size. Results show a steady reduction of the average size of threads as we go from
no optimization to local to full optimizations. The reduction occurs despite the merging
operations. This is due to large reduction in the total number of instructions executed.
The distribution of S (Fig. 3) shows that 34% of all threads have six instructions.
Threads with S, > 10 account for 23% of total.
Thread Critical Path Length. A slight reduction in S,, occurs in going from no
optimization to local optimization. However, there is a nontrivial increase in in the path
length from un-optimized code to fully optimized code. This is especially true for LL and
PB. The distribution of S., (Fig. 4) shows a strong dominance of thread lengths of two,
three and four accounting for 85% of all threads. This indicates that when the instruction
level parallelism within a thread is exploited, the thread execution time could be very
short.
Thread Parallelism. The trend for H is similar to S in that parallelism decreases as
more optimizations are applied in all benchmarks. Overall, due to the reduction of thread
size, HI decreases even though S,, increases as more optimizations are applied. In fully
optimized cases, average parallelism range from about 3.0 to 5.5 with the average of 4.
There is a relatively wide variances in the parallelism. The intra-thread parallelism is
large enough to justify a highly superscalar processor implementation. The distribution
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Thread Inputs. Intra-thread optimizations do not affect the number of inputs per
thread. However, there is a significant reduction of about 24% in the number of inputs
after global optimizations. The average number of inputs varies widely between different
benchmarks: LL has the largest number of inputs (9 to 12) and LB the smallest (4 to 5).

With full optimizations, the cumulative average is about 5.6 inputs. In the distribution of
the number of inputs per thread (Fig. 6), the dominant value is three inputs per thread.
Threads with eight or less inputs account for 86.5% of all executed threads across all
benchmarks.
Matches Per Instruction. For a given optimization level, the matches per instructions
are confined within a narrow range for all classes of benchmarks. The MPI goes upwhen local optimizations are applied; MPI goes down by 8 to 13% when fully optimized.

This implies that there are more significant reduction in the number of matches than the
reduction in the number of instructions, resulting in a smaller MPI for the fully optimized
code.

mm llmS asll i mmmi
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Linpack Purdue Loops Average
local full local full local full local full

Match 1 0.76 1 0.68 1 0.67 1.00 0.69
Instruction 0.93 0.82 0.9 0.78 0.91 0.73 0.93 0.77
Thread 1 0.99 1 0.88 1 0.85 1.00 0.89
CPL 1 0.99 1 0.81 1 0.77 1.00 0.83

Table 2: Program Characteristics (Normalized to Un-optimized Code)

3.2 Program-wide Characteristics

In Table 2, the inter-thread characteristics of programs are shown. The values shown
are normalized with respect to the un-optimized code.
Matches. As would be expected, the number of matches remain unchanged when only
local optimizations are applied. When global optimizations are also applied, there is a
significant reduction in the number of matches performed, typically 24% to 33%.
Instructions. There is on the average a 7% reduction in the total number of instructions
executed when local optimizations are performed. After applying global optimizations,
the average reduction is about 23%.
Threads. The number of threads executed remain unchanged for locally optimized code.
When full optimizations are applied, there is a 10% reduction in the number of threads
on the average. The reduction for the LL and PB are 12 to 15% but the reduction for the
LB are very small, a little more than 1%.
Critical Path Length. The characteristics of critical path lengths of programs are very
similar to the number of threads executed, The path lengths are reduced by about 20%
for the LL and PB but for the LB, the reduction is very small. While the CPL is reduced
by 17% the total number of threads is reduced by only 11%: this implies that, on average,
more threads on the critical path length are eliminated than otherwise. This implies an
increase in the inter-thread parallelism.

3.3 Run-time Performance

The results of simulated real time performance applied to different optimization levels are
used to measure the effects of these optimizations on the actual overall performance.

The results are obtained with the following architectural settings: instruction level

parallelism that a processor can utilize is 4, the output bandwidth, which is the number
rf tokens that a processor node can put on the network in a single cycle is 2, and a

memory access latency of 5 cycles. We use the Motorola 88110 timing for instruction
execution times. All the tokens go through the network at a cost of 50 cycles except in
the uniprocessor setting. We obtained results for 1,100, and infinite number of processors.
These architectural features are not meant to model an existing system exactly, but rather
approximate it to give us an empirical idea on what we can expect. In each case, the run
time performances for both locally and fully optimized codes are compared with respect
to the un-optimized code.

Table 3 shows the percentage improvement in speedup over the un-optimized code.
The improvement in speed is significant with most improvement occurring when global
optimizations are applied. With local optimization, only a single digit percentage speedup
is achieved in most cases. Global optimizations can achieve up to 35% speedup in the
case of LL. For LB and LL, the speedup remains relatively independent of the number of
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P=1 P=100 P--00
Benchmarks local global local global local global
Linpack 6.0 22.8 16.5 21.7 17.3 21.6
Purdue 2.0 19.6 4.8 26.3 5.5 27.6
Loops 3.4 35.1 8.2 33.7 8.7 34.8

Average ( 3.1 28.4 ] 7.9 29.9 8.4 30.9

Table 3: Percent Speedup over Un-optimized Code

processors. However, for PB, the speedup rises as the number of processors increase, this
is due to their larger average program parallelism.

4 Discussion and Conclusion
In this paper we have described and evaluated a top-down thread generation method and
a set of local and global code optimizations. The effects of these on the intra-thread
(local) and inter-thread (global) characteristics have been evaluated. The initial threaded
code is generated from Sisal via its intermediate form IF2. While the statistics on intra-
thread and program level parameters are important to understand the behavior of the
thread generation and on the expected resource requirements, the bottom-line of any
performance measure is the overall program execution time. In this respect, the local
optimizations had a relatively small but meaningful effect while the global ones had close
to a 30% reduction in execution time.

Overall, the average size of threads is relatively large compared to some of the values
reported for bottom-up thread generation techniques [7, 14]. The threads in LL are
in general much larger than the other classes of benchmarks. This is due to compact
loop kernels whose inner loops consist of only a few threads. For the LB, the global
optimization only minimally affects the number of threads executed or the critical path
length of programs. This is due to the small size of these benchmarks which does not
give much opportunities for the merge operations. Nevertheless, some speed-up is still
observed.

The internal thread parallelism achieved is surprisingly large compared with our pre-
vious work on the evaluation of the bottom-up Manchester cluster generations which only
achieved parallelism of about 1.15-1.20. We observe that the number of inputs required
are relatively large, on the order of 4 to 10. This implies a need for handling these variable
number of inputs efficiently.

In general, we observe that even though there is some improvement in various mea-
sures when local-only optimizations are applied, the biggest improvement comes from
global optimizations. The results of the bottom-up optimizations indicate that they have
achieved our objectives in code generation: (1) Synchronization overhead (e.g. number of
matches) has been reduced significantly. The total number of matches has been reduced
by 25-30% and MPI has been reduced by about 10%, thus reducing the required syn-
chronization bandwidth. (2) Number of inputs to a thread has been reduced by about
24%, thus reducing the input latency. (3) Internal parallelism has been reduced by about
25%, meaning that processor requirements are not as great as before.

It should be noted there are many other techniques such as loop un-rolling that could



46

be incorporated. For example, loop un-rolling can be applied either within a thread
or across threads. The expected effects of loop un-rolling are: (1) an increase in the
average thread size, (2) a decrease in the relative cost of synchronizations (matches per
instruction), (3) a decrease in the total dynamic thread count. This would translate in an
increased ability to mask latency and a reduced synchronization overhead albeit at the
cost of increased demands on the instruction level parallelism within a processor.
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Abstract:
We implement the NAS parallel benchmark FT, which numerically solves a three

dimensional partial differential equation using forward and inverse FFTs, in the dataflow
language Id and run it on a one node monsoon machine. Id is a layered language with a
purely functional kernel, a deterministic layer with I-structures, and a non-deterministic
layer with M-structures. We compare the performance of versions of our code written in
these three layers of Id. We measure instruction counts and critical path length using
the Monsoon Interpreter Mint. We measure the space requirements of our codes by
determining the largest possible problem size fitting on a one node monsoon machine. The
purely functional code provides the highest average parallelism, but this parallelism turns
out to be superfluous. The I-structure code executes the minimal number of instructions
and as it has a similar critical path length as the functional code, runs the fastest. The
M-structure code allows the largest problem sizes to be run at the cost of about 20%
increase in instruction count, and 75% to 100% increase in critical path length, compared
to the I-structure code.

Keyword Codes: D.I.l.; D.3.3.; E.2
Keywords: Applicative Programming, Language Constructs and Features, Data Storage
Representations

1 Introduction

In this paper we study the design of efficient declarative programs by implementing the
NAS three dimensional FFT PDE benchmark FT [2] in Id 18). This study is part of a
larger project where we try to assess which declarative language features are of importance
to write efficient scientific codes. A declarative programming language allows expressing
what is to be done, without specifying too much of how it is to be done. As an example,
declarative programming languages are implicitly parallel, i.e., allocation of tasks and
data on processors are not expressed in the program. This frees the programmer from
this level of complexity in the design of parallel programs.

The declarative programming language Id has a functional kernel. Arrays in this func-
tional kernel are created using monolithic array constructors called array comprehensions.
In [1], Arvind and others argue that these array comprehensions lack expressiveness, and
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that for certain problems a lower level of constructs, manipulating the elements of 1-
structures, is necessary. An I-structure is a single assignment array with element-level
synchronization for reads and writes. Because of their single assignment nature, Id pro-
grams with I-structures are deterministic, even though pure functional referential trans-
parency has been lost. In [3] it is shown that for certain problems I-structures are again
not powerful enough and that the more expressive M-structures are needed. M-structures
are also arrays with element-level synchronization, but do not have the single assignment
property anymore. M-structures allow "put" operations to write in an empty array slot,
and "get" operations read and empty an array slot. Therefore, with interleaved puts
and gets, M-structures allow destructive updates to express potentially non-deterministic
producer-consumer relationships.

The above papers argue convincingly that the Id language gets increasingly more
expressive when I-structures and M-structures are added. In this paper, we are interested
in the time and space efficiency of realistic programs, when written in these various
layers of the language. We therefore analyse three Id implementations of the NAS FT
benchmark: a functional version, a version using I-structures, and a version using M-
structures. We measure the time complexity of our programs by running small problems
on the Monsoon Interpreter MINT, which reports on the number of instructions executed
and the critical path length and provides parallelism profiles. We measure the space
complexity of our programs by determining the maximal problem size that fits in our
one node Monsoon machine [7], which has a 4 Megaword data memory. In this case, the
goal is to run a 64 x 64 x 64 problem, given in the NAS benchmark specification as the
minimal sized problem, on a one node Monsoon machine. One 3-D 64' object contains
half a Megaword of floating point numbers.

It turns out that the purely functional code provides the highest parallelism, but at the
cost of high instruction counts and high space usage. The I-structure code executes the
minimal number of instructions and runs the fastest on the one node Monsoon machine,
which provides 8-fold parallelism. The M-structure code allows the largest problem sizes
to be run and turns out to be the only code that allows us to run the 64 x 64 x 64 problem.

The rest of this paper is organized as follows. Section 2 defines the FT NAS benchmark
solver. Section 3 first discusses the representation of 3-D objects, and then highlights the
differences in programming styles in the, functional, I-structure, and M-structure codes.
In section 4 we analyse the time and space performance of our three codes. Section 5
mentions related work and concludes.

2 Problem specification

In the NAS benchmark FT, the following three dimensional heat equation is solved nu-
merically:

,u(X, t)
6t = aVu(Xt)

where x is a position in three dimensional space and a a constant describing conductivity.
When a Fourier transform is applied to each side, this equation becomes:

-vz t 4aa.•izJ'v(z, t)
6t

where v(z, t) is the Fourier transform of u(x, t). This equation has the solution:

v(z, t) = e-,*,2
112tV(z, 0)
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Figure 1: Flow diagram of top level of NAS benchmark FT

The discrete version of the above problem can be solved using Discrete Fourier Trans-
forms (DFT) instead of continuous ones. First, a 3-D DFT is performed on the original
state array u(x,0), then the results are multiplied by certain exponentials and lastly an
inverse 3-D DFT is performed (see Figure 1.) The forward and inverse DFTs of the ne x
n2 x n3 array u are defined respectively as:

n3--1 n2--1 nj--1

1=0 k--O jfO

I' ln n3 - n2- ni -1 .L21rijq/nie21rikr/n2e2wils/n3,,

9,r.(U nl~n31=0 k=O j=0

In the FT benchmark, the complex array U is initialized using a pseudo-random
number generator. Setting V equal to the 3-D DFT of U, ce = 10-' and t -- 1, the
intermediate value W is computed:

where 3 is defined as j for 0 < j < nj /2 and j - n, for nj /2 <_j< nl. The indices k and
1 are similarly defined with n2 an,: 43. X, the 3-D inverse DFT of W, is then computed.
Finally, a checksum E!=0 X,.... is computed where q =j (mod ni), r -- 3i (mod n2) and
s = 5j (mod n3). The computation of W, X and the checksum, is repeated for values t
from 2 to 6. V needs only to be computed once. The array of exponential terms for t > 1
can be obtained as the t-th power of the array for t = 1.
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The benchmark allows any algorithm be used for the computation of the 3-D FFTs.
The algorithm we implement takes a complex array of size n, x n2 x n3 and performs
n2 x n3 ni-point I-D FFTs in the nl direction, followed by n 3 x n, n2-point I-D FFTs in
the n2 direction, followed by n, x n2 n3-point I-D FFTs in the n3 direction yielding the
final result. The benchmark also allows any algorithm to be used for the individual l-D
complex FFTs. We use a straight-forward iterative algorithm which reorders the array
using bit-reversal of the index, and performs butterfly group recombinations, where the
smallest group is 4, and the group size doubles in each iteration. Using a bottom case of
4 instead of I or 2 cuts out the bottom-most branches of the FFT tree making it much
more space and time efficient. It also makes resource management simpler as pointers
and objects are not interchanged [4]. We use iterative FFTs instead of recursive ones,
because in the iterative codes all the intermediate arrays can be deallocated immediately
after they are no longer required. Details about this can also be found in [4].

3 Implementation

3.1 Data Representation
The first choice for the data representation that comes to mind is a 3-D array of complex
numbers represented by tuples of two real numbers. However, Id does not treat, for in-
stance, a I-D sub-array of such an array (e.g. A[ij,*]) as an independent data structure.
Ideally we would like a 1-D FFT function to be able to generate its result directly in a
l-D sub-array of our 3-D array in anv of the 3 directions. As this is impossible, it is just
as simple and more efficient to have a linear data structure representing the 3-D object.
Selecting a vector in a certain direction now becomes stepping through the array with the
appropriate stride. Having the complex numbers represented by tuples introduces consid-
erable inefficiency because of the extra indirection introduced by the tuples. Moreover,
deallocating an array of tuples can cause complications, if the array elements are some-
times copies (in which case only a new pointer is created) and sometimes new values (in
which case a new tuple and a new pointer is created) [4]. We therefore opt for the simplest
data representation possible: a linear array of 2nin 2n 3 floating point numbers. To get the
input array, 2n i n2n3 pseudo-random floating point values are generated as specified in
the FT benchmark, and then used to fill the complex array Uj,ki, 0 < j < nli, 0 < k < n2,
0 < I < n3, where the first dimension varies most rapidly as in the ordering of a 3-D
Fortran array. A single complex entry of U consists of two consecutive pseudorandomly
generated results and is stored such that the real and imaginary parts are a distance of
n n2n3 apart.

3.2 Purely functional implementation
In the functional version of the program, arrays are created using array comprehensions.
An array comprehension creating an n-dimensional array consisting of m regions is of the
form:

nD-array((1, ul),... (I., u,)) of
J [•(1).... t''(l) =expri 11 gen' .. gen di

I f•I,,)....f•l,,) =ex,',,IIgen' .. gend-



where each generator genk , is of the form: iý 1- to uk. Zero or more generator
expressions define a region using a cross product of nested loops. I is the vector of
loop variables for region j. Array comprehensions allow for elegant concise definitions of
arrays. There are, however, a number of problems:

" No Sharing. When the computation of a number of array elements can share sub-
computations, this cannot be expressed in an array comprehension, as each array
element is defined independently.

" No sub-array target. We cannot create a substructure and scatter it over a larger
whole array as array comprehensions work on element level.

" More intermediate arrays. As an array comprehension does not allow the ex-
pression of loop carried dependencies, extra intermediate arrays often need to be
created.

The consequence of this lack of expressiveness of purely functional code is a high
instruction count as well as a high storage use, as we shall see in the Results and Analysis
section.

3.3 I-structure Implementation

An I-structure can be created empty somewhere in the code, and partly or completely
filled throughout the program. An I-structure allows array elements to be defined by
array element assignments, but still retains determinacy by allowing each element to be
defined at most once. The I-structure implementation of this benchmark is the closest to
the problem definition. Also almost nowhere were we forced to over-specify intermediate
array details introduced by the purely functional style. This makes the I-structure ap-
proach in certain circumstances more declarative than the purely functional approach 131.
Array elements are now defined in loop constructs and nothing prevents us from defining
more than one element in one loop body, thus avoiding the sharing problem of array
comprehensions. In I-stucture code we can use loop carried dependencies to avoid the
creation of unnecessary intermediate structures. As we shall see, this makes 1-structure
codes more efficient in instruction counts as well as space usage.

3.4 M-structure Implementation

The problem with the I-structure implementation still is that, when performing a I-D
FFT on a sub-array of the 3-D object, we need two versions of the object: the one that
is read, and the one that is written. When inspecting the FFT algorithm, it is clear
that exactly the same elements that are being read, need to be rewritten. An imperative
algorithm would use only one data structure. M-structures allow us to do the same thing
in a declarative context. It should be noted that M-structures are not needed here for
expressiveness reasons: the algorithm can be expressed very naturally using I-structures.
The only reason to go to an M-structure implementation of FT is space efficiency.
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As was mentioned in the introduction, M-structures allow elements to be "put" into
an empty location: A![i] = expression. A put cannot overwrite a value, i.e. a put to a full
location will result in a run-time error. Elements can be extracted, i.e. read and emptied,
by a "get" operation: x = A![i]. A third operation z = A!![i] reads (or extracts and puts
back) an M-structure element. A fourthi operation A!![il = x replaces (extracts and puts
a new value) an element of an M-structure. Notice that the operations with one ! change
the full/empty state of the elements, whereas the operations with the double !! take a full
element and leave it full.

M-structures in a parallel model of computation, such as the Id model of computation,
give rise to non-determinism: if a number of threads try to get an M-structure element,
only one can have it, and which one that will be depends on the arrival tLne of the
particular get operation.

We found that there are two styles of M-structure programming. The imperative style
uses reads and replaces to ensure that M-structure elements are always full, and provides
explicit synchronization using barriers (notation - - -). This style mimics imperative
programming closely. Of the M-structure implementations of the FT benchmark, this
is the easiest to write, simply because use of replace operations on M-arrays can closely
imitate imperative programming style. Use of barriers for explicit synchronization can
also emulate close to sequential programming style, extending the ease of programming
(to people who are more familiar with sequential thought process). This style gives us the
maximum space efficiency we are after. However, the use of barriers combined with the
reads and replaces, which are more expensive than gets and puts, makes this style almost
as inefficient as the purely functional style!

The second style of M-structure programming, the data driven style, uses puts and gets
for both communication and synchronization and avoids barriers as much as possible. Now
the puts and gets need to be perfectly balanced, which makes this style much harder and
more error prone. However, inspecting the behavior of FFT algorithms, it is clear that the
butterfly data dependences in the recombination phases allow extracting two elements,
performing some shared computation on these and putting two elements back in exactly
the same place. Therefore, puts and gets without extra barriers work for FFTs.

3.5 Code Example
We consider the function that performs n2 one dimensional FFTs each of size n1 from
an array which is n1 x n2 long. This essentially requires partitioning the input vector
in slices, performing a 1-D FFT on each such slice and gluing the resulting together to
obtain the resulting array. An I-structure implementation of the function is as follows:

def ctfts IS ni n2 x ro a {
stride = nl*n2; size = nl*2; typeof v = I_vector(F); v= I-vector(1. 2*nl*n2);

{for j<-I to n2 do
y = slice j n1 stride x; z fft y ro IS;
{for i<-l to n1 do

v[(j-i)*nl +i] = z[i];
vC(j-1)*nl +i +stride] = zfnl+iJ; } I

in V);
%i -D FFT on a slice: I-Structure Code
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In the above code the function slice copies a slice of values from x, and the vector
ro contains roots of unity. When the function is implemented in imperative M-structure
style, we need to sequentialize the problem using explicit harriers before every stage,
because the arrays y and z will be reused. The function read.slice reads a slice of values
from x and updates y with these values. The function ifi updates z. Again, ro contains
roots of unity.

deo cffts IS nl n2 z ro {
typeof X = H.vector(F); typeof ro I-vector(F);
stride = nl*n2; size = nl*2;
z {=farray (1.size) of I Qj3 = 0.0 11 j<- 1 to size);
y -{ (Narray (i.eize) of I 0j3 = 0.0 Ii j<- 1 to size);

(for j<-I to n2 do
_ read-slice j nl stride x y;

=ft y ro IS z;

(for i<-1 to n1 do
x!![(j-1)*nl +i] = z!![i];
xi![(j-1)*nl +i +stride] = z!!'tl+i); ) }

in x);
% 1-D FFT on a slice: Imperative N-Structure Code

When writing the same code in a data-driven M-structure style, we get rid off all the
explicit barriers except one. Lack of this barrier causes writing on the same location of
x (within the i loop), before it is extracted (by function get-y). The function get.slice
extracts values out of x and puts them in y. The function fft extracts the values out of y
and puts them in z, which is emptied again in the code that rewrites the slice of x that
was emptied by getslice.

del cfts IS nl n2 x ro = {
typeof z = I-vector(F); typeof ro = Ivector(F);
stride = nl*n2; size = n1*2;
z = ld-X-array(1,size); y = ldX.a.rray(1,size);

{for j<-I to n2 do
% In get.y fills y and empties a section of x

- : get-y j nl stride z y;
_ : ft y ro IS z;

(for i<-1 to nl do
x![(j-i)*nt +i] = z!Jil;
x![(j-1)*nl +i +stride] = z!Enl+i]; I }

in x);

% 1-D F1T on a slice: Data-driven N-Structure Code

Building an array out of a variable number of variable sized sub-arrays turns out to be
quite hard to implement in the purely functional style. The problem here is that the
output value of one element of a slice is not known independently, as for one input slice,
all the elements of the resulting slice are evaluated. It would be too expensive to evaluate
a whole slice of elements just to get the value of one element. To get around this problem,
we create an intermediate vector of vectors, each vector representing a slice.
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deo cffts IS al n2 x ro : {
stride = nl*n2; size = nh*2; length = 2*stride;
typeof tv y vector(vector(F));
tv = { vector (1,n2) of

I [j] = getid j ni stride x j i <- 1 to n2};

delsubst getid j ni stride x s {
y = got-y j n1 stride x;
z = fUt y ro IS;

in z);

v{ vector (1,Iength) of
I [(j-1)enl +i] = tv[j][i] 11 j <- 1 to n2; i <- 1 to nl

[ [(j-1)*nl +i +stride] = tvljj[i+nij II j <- 1 to n2; i <- 1 to nil;
in v);
% i-D FVT on a slice: Functional Code

4 Results and Analysis

In this section we measure instruction counts and critical path length using the Monsoon
Interpreter Mint. Two time related measures are recorded: S1, the total number of
instructions executed, and the critical path length Som, the number of parallel time steps
required, when tl -. availability of an unbounded number of processors is assumed. We
measure the spact •quirements of our codes by determining the largest possible problem
size that fits on a one node Monsoon Machine.

4.1 Time Analysis

Table 1 summarizes the instruction counts (S1 ) and critical path lengths S.. for some
problem sizes. The functional code has the maximum instruction count. This is caused
by the inability to share computation in array comprehensions, and by the need to create
intermediate data structures, as shown in the slice example. The I-structure code has the
lowest instruction count, and a critical path length close to the functional code, which
indicates that the higher parallelism of the functional code is superfluous. The data-driven
M-structure code requires about 20% more instructions than the I-structure code. Also,
the M-structure code has a 75% to 100% longer critical path length. This is caused by
the need for explicit synchronization, and by the fact that the M-structure X, after the
checksum has been computed, needs to be completely emptied before it can be reused
in (producer-consumer style) in a next stage. This occurs after the checksum operation.
Also, the code performing the checksum needs to use the more expensive reads in order
to simplify the emptying of the array.

4.2 Space Analysis

To reach the goal of running a 64 x 64 x 64 size problem on the one node Monsoon machine, we
first need to determine how many such arrays can be stored before we run out of heap memory.
Running just the random vector generator (generating U in Figure 1), we establish that the

L
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Method Functional I I-structure ( M-structure]J

$s1  S.1 S1  S [ S1  S.
4x4x4 3,241 220 1,025 230 1,257 340
8x4x4 6,403 300 1,556 300 1,902 520
8x8x4 13,729 480 2,665 480 3,211 840
8x8x8 _[32,303 800 800 5,877 1,600

Table 1: S, and S. for FT benchmark (x 1000)

maximum size of a 3-D object that can be generated on our machine is 128 x 128 x 80, and
that at most 4 64 x 64 x 64 arrays can exist at the same time. According to the benchmark
specification (see Figure 1), Exp needs to be created once and remains needed throughout the
program. In the first stage of the program U and V coexist. After that, only V will be needed.
In the cycle for t from I to 6, W and X coexist. Therefore at least 4 3-D objects must coexist.
In the M-structure implementations we can over-write V on U and X on W, which brings the
requirement down to 3 3-D objects. From this we conclude that on a one node Monsoon, we
can never run any larger than 64' problem.

To establish the space usage of our I-D FFT codes, we ran these independently of the rest
of the FT benchmark. The functional code without resource management allows problem sizes
of up to 216, whereas with resource management it allows problem sizes of up to 21'. The
corresponding numbers for the I-structure implementation are 217 and 218. The M-structure
code does not require explicit resource management as it reuses its data structures. It allows
problem sizes up to 219. The double capacity of the M-structure code is explained by the fact
that it writes the resulting fft back on its input array.

The maximal FT benchmark problem sizes we could run were 163 for the resource managed
functional code, 323 for the I-structure code, and 643 for the M-structure code. This phenomenon
corroborates our discussion in the implementation section. The functional implementation cre-
ates, even when resource managed, intermediate structures. The I-structure implementation
requires independent structures for input and output, whereas the M-structure implementation
can write results back into the input structure.

5 Conclusion

I-Structures and M-structures are introduced in [1] and [3], respectively. Id implementations
of the ID FFT are discussed in [4]. Sisal implementations of the ID FFT are discussed in
[5]. A high performance ID FFT algorithm in Sisal for a vector computer is presented in
[6]. The contribution of this paper is the quantitative comparison of the different declarative
programming styles using a realistic, well-known benchmark.

In this paper we have studied certain declarative language features and their effect on the
time and space efficiency of our programs. More specifically, we have studied three declara-
tive implementations of the NAS FT benchmark: a purely functional, an I-structure, and an
M-structure implementation, all written in the programming language Id and executed on the
Monsoon Interpreter and Monsoon hardware. The purely functional code provides the most
parallelism, but at the cost of a high instruction count. I-structures provides the fastest im-
plementation: the lowest instruction count and a critical path length very close to that of
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the functional code. However, I-structure code is less space efficient than M-structure code.
Only the M-structure code allows the 64' problem specified in the FT benchmark to be run.
Therefore, we have the ability to trade space for time between the M-structure and I-structure
implementations of this benchmark.
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Abstract: Plaa-do compilation technique is a new, advanced compilation framework
for eager data transfer on distributed-memc;ýy parallel architectures. The technique is
especially effective for a recent breed of low-latency architectures by realizing a high-
throughput low-latency communication scheme, pipelined sends. The compilation of high-
level, plan-do style code into low-level, eager data transfer code is achieved via straight-
forward application of a set of translation rules. Preliminary low-level benchmark results
on a real parallel architecture, EM-4, exhibit good speedups.
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1 Introduction

Distributed-Memory Massively Parallel Processors (DM-MPPs) have attractive features
for scalability. There are many types of DM-MPPs; but, irrespective of their architectures,
the basic abstract execution models of such machines would be those of asynchronously
communicating (multiple) threads. Such an abstract machine could be naively realized by
adding message-passing routines to the thread-based abstract machines; the collection of
those routines is usually called a message-passing library.

However, such a library-based approach prevents us from exploiting advanced im-
plementation techniques for communication; such techniques can be exploited only by
compilation-based approaches. They include, for example, a technique of compiling mes-
sage interpretations, known as active messages[6], in which a message omits the runtime
tags for the message format and carries the address of a compiled message handler. There
are further advanced implementation techniques enabled by compiling communications.

In this paper, we concentrate on an implementation technique, eager data transfer,
and describe its compilation framework. The idea of eager data transfer originates from
the dataflow execution model, but we employ it in the context of thread-based execution
models. Eager data transfer can be (re)stated as "eagerly sending a datum to the location
where the datum will be used," which improves both throughput and latency by reducing
local buffering of messages on both sender and receiver nodes. Of course, there is a
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tradeoff for the excessive use of eager data transfer; it increases the number of messages
and matchings of the messages, but we demonstrate the effectiveness when employed with
compiled pipelined sends, via performance measurements on a fine-grained hybrid parallel
architecture EM-4[4, 3].

There are many different levels of abstraction, even for the same general notion of 'di-
rectly communicating threads.' For example, Concurrent Object-Oriented Programming
(COOP) languages, such as ABCL[10], provide high-level abstraction, while distributed
memory machines themselves provide the lowest-level of abstraction. In this paper, we
regard the compilation process as shifting down the abstraction levels within the directly
communicating threads model, and discuss the necessary compiler supports.

In order to realize eager data transfer, dataflow information is indispensable. The
compiler must provide additional dataflow information at every level of the abstraction;
i.e., every intermediate representation must embody dataflow information to maintain
modularity (clear separation of layers), even at the levels where optimization techniques
based on dataflow information are not applied. This requirement causes a difficulty in
combining several compilation phases into one pass. The plan-do style intermediate code
solves this problem by representing the combination of control-flow information and data-
flow information in a stream form. Furthermore, it has an additional benefit of serving as
a convenient intermediate representation when pipelined parallelization of the compilation
phases themselves is desired.

2 Eager Data Transfer

In order to clarify our motivation, this section presents several examples of eager data
transfer, which can be used at various abstraction levels.

2.1 A Fine-Grained Example - Pipelined Sends

A (remote) message passing implementation scheme which overlaps computation and com-
munication, a pipelined send, has been proposed for ABCL/EM-4[8, 91 (a COOP language
system ABCL on EM-4). This scheme overlaps the evaluation of message arguments and
their sending in a pipelined way; it improves both throughput and latency by eliminating
local buffering of messages on both sender and receiver nodes. The scheme in realized by
(1) remote code invocation, (2) remote write, and (3) FIFOness of network, which are
efficiently supported by EM-4.

The packet exchange protocol for the pipelined message passing proceeds as follows
(See Figure 1): (1) The sender reserves a message box on the receiver node, by invoking a
proper code block to return the allocated message box address. (2) The sender evaluates
the arguments of the message. As each argument is evaluated, its packet is eagerly sent
to the proper location in the message box on the receiver node. The evaluation and
sending are pipelined in a fine-grained manner. (3) The message box address is sent to
the receiver. It may enqueue the message until it can process the message.

Although packet transmissions to reserve a message box may result in a round-trip
latency, multi-threading at the sender node effectively hides the latency. Moreover, the
reservation provides us the following significant advantages: (1) It allows us to manage
the message queue efficiently at the receiver node, just by pointer manipulation rather
than copying all thc contents of the message. (2) The knowledge of the target message
box address makes pipelined send possible, which reduces (a) the communication latency
by eager data transfer before the complete evaluation of the message and (b) the cost of
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Figure 1: Packet Exchange for a Pipelined Request Message Send

local memory access for local buffering at the sender node. Moreover, pipelined sends can
be interruptible, namely, multiple sends can be interleaved with one another.

2.2 Coarser-Grained Examples

Eager data transfer can also be exploited at coarser levels of granularity:

[ObjI <- [:Msgl [:cons 1 [:cons 2 [:nil]]D]]

This program fragment in a COOP language, ABCL, denotes a request message send
to Objl, whose message consists of a message tag :MsgI and a list of integers I and 2.
Suppose that this is a remote message send and cons cells are used to implement the list.
We would like the compiler to generate the code for remote cons at the node where the
Obj I resides, rather than local cons plus remote copy.

This kind of eager data transfer is not limited to COOP languages. The corresponding
example in a (thread-based) functional language would be as follows:

(Funi [:cons 1 [:cons 2 [:nil]]])

Here, we would like the compiler to generate the code for remote cons at the node where
the function invocation frame for FunI resides.

3 Compilation Framework for Eager Data Transfer

The high-level code should contain certain amount of dataflow information to realize
eager data transfer at the lower-level. The dataflow information is actually needed for
code conversion (generating lower-level code from higher-level code), rather than for mere
code optimization. The information includes (when fixing a value v): (1) whether or not
v is used eventually, (2) which thread (node) will use v, (3) to which location on memory
v will be finally stored, etc. Both (2) and (3) are especially indispensable for realizing the

pipelined sends described in Section 2.1.
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3.1 Iniining Dataflow Information in Plan-Do Style

The plan-do style intermediate code satisfies the i iescribed above and also
provides additional benefits for the compilation process itself. This subsection briefly
describes the plan-do style code; the important effect of using the plan-do style (i.e.,
realizing eager data transfer) is demonstrated when the plan-do style code is interpreted
by the lower-level part of the compiler, which is presented in Section 3.2.

The basic idea behind plan-do style is that (1) the plan-part (i.e., plan declaration part)
provides dataflow information, and (2) the do-part (i.e., plan execution part) provides
control-flow information. The benefits of the plan-do style are: (1) it takes a stream form
instead of an arbitrary graph structure, and (2) interleaving of plan declaration and plan
execution is possible. Thus, it allows combining of several compilation phases into one
pass, or alternatively, pipelined parallelization of the compilation phases.

There are compilation targets for which the plan-do style code is specially suitable,
which are the expressions representing natural dataflow information; using the plan-do
style code makes it possible to extract and represent the information without costly flow
analysis. The plan-do style code embodies the semantics of the source program in terms of
sequential execution of a single thread of control, and also provides dataflow information
without loss of machine independence of high-level code.

Let us take a simple message send example:

[objl <= [(+ i 0) (+ j 2)3)

This program fragment in ABCL denotes a request message passing to object obj 1, whose
message is a tuple of an integer i+1 and an integer j+2. This source program is converted
into the following plan-do style code via the high-level parse tree:

(newplan (pt dl d2) (request-send))
(throw objl dl)
(neuplan (p2 d3 d4) (make-tuple d2))
(newplan (p3 d5 d6) (arith3-+ d3))
throw i d5)
throw I d6)
do p3)

(neuplan (p4 V7 d8) (arith3-+ d4))
(throw j d7)
(throw 2 d8)
do 4 p2 pl)

(newplan (p1 dl d2) (request-send)) declares plan pl together with destinations
dl and d2. By 'destination,' we mean an argument of the plan (which corresponds to a
dataflow arc to the plan node in terms of dataflow model). The plan is to send a request
message to a target object. The target object's name is given by 'throwing' the name to
dl. By 'throwing,' we mean that a value is passed as an argument for a plan. (throw
obj I d1) throws the value of obj 1 to dl. (do p1) carries out the plan p1. Similarly, the
actual parameter of the request message is provided by throwing the obtained value (i.e.,
"a tuple consisting of i+1 and j+2) to d2 in a subsequent execution of another plan.

Accordingly, (newplan (p2 d3 d4) (make-tuple d2)) declares plan p2 to (1) make
"a tuple of values thrown to d3 and d4 then (2) throw the tuple to d2. (neuplan (p3 d5
d6) (arith3-+ d3)) declares plan p3 to (1) add values thrown to d5 and d6 then (2)
throw their sum to d3.

The translation of the parse tree into the plan-do style code is straightforward: When
the (recursive) translation function reaches a certain tree node, before the translation of
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the subtrees, it declares the plan for the current tree node, and after the translation of
the subtrees, it 'executes' the plan.

The standard (trivial) interpretation of the plan-do style code (which is not employed
for eager data transfer) is as follows: (1) A plan declaration is interpreted just as declara-
tion and no actions are performed. A destination is interpreted as a temporary variable.
(2) A 'throw' is interpreted as an assignment of the value to the corresponding tempo-
rary variable. (3) A plan execution is interpreted as an actual execution of the plan. In
Section 3.2, an alternative interpretation developed for eager data transfer is presented.

3.2 Interpreting Plan-Do Style Code to Generate Eager Data
Transfer Code

This section describes the compilation process for realizing eager data transfer, by inter-
preting the high-level plan-do style code. We exemplify the process for pipelined sends
described in Section 2.1 with the simple message send example in the previous section.

Figure 2 shows the translation function Tr from the high-level code into the lower-level
code. Here, when hcode is high-level plan-do style code, Tr [hcodel (penv, deny) returns
the lower-level code in the context of the plan environment penv and the destination
environment deny. penv is a function from a set of plan identifiers (ranged over by p) to
plan definitions (p corresponds to a dataflow node in terms of the dataflow model). deny is
a function from a set of destination identifiers (ranged over by d) to pairs of p and integers
(ranged over by i). (d stands for i-th dataflow arc to p in terms of the dataflow model.)
Trnsfr [vi, fl, d] (penv, deny) returns a fragment of lower-level code which transfers a value
vi to the fl-field of destination d. The results of Trnsfr are significantly influenced by the
dataflow context of (penv,denv) in order to select the eager data transfer instructions
under certain conditions. For a function f, "f{x ý-4 y}" denotes the function f' such that
Dom(f') = Dorm(f), f'(x) = y and f'(x') = f(ix') for all x' E Dom(f) - {x}. By "h :: r,"
"::" denotes consing of the head h and list r, and "[a, b, c]" denotes the list consisting of
a, b, and c. By "l1 0 12," "0" denotes the concatenation of two lists t1 and /2.

The translation function basically translates the high-level code in the following way:

"* For a plan declaration, it memorizs the plan and the destinations in environments
penv and dens. Fresh lower-level variable identifiers will be introduced if necessary.

"* For a plan execution, it generates code for finishing the plan, then if the result
value has not been eagerly sent, it generates data transfer instructions by calling
the Trnsfr function.

"* For throwing a value to a destination, it decomposes the (possibly) nested higher-
level tuple value into a set of pairs of lower-level values and the field number lists
by calling Decomp, and generates data transfer instructions by calling Trnsfr.

Tr and Trnsfr embody the translation into eager data transfer; i.e., they realize the
pipelined sends. For this purpose, Tr translates the high-level code in the following way:

"* For request message passings, it prepares pointers for a request message box to
realize a pipelined send, and it only generates instructions for pointer manipulation.

"* For tuple construction, it eagerly transfers the tuple elements without buffering.

"* For simple arithmetic operations, it simply prepares three temporary variables for
the operation, and the result of the operation is transferred by Trnsfr.
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TrfI(newplan Pt di d2 (req-send)) ::r (penv, denv)=
Tr rJ (penv{p, ý- req-send(tt, tz, t3)}, denvy{d, - (p1, 1),d 2 ý-4 (p1,2)})
(tl, t2, 63 new)

Tr [(newplan pi di d2 (make-tuple d3)) :: r] (penv, denv)
Tr[rJ (penv{pi '-+ make-tuple(d3 )}, denv{d1 i-4 (pl, 1),d 2 i-# (pl,2)})

Tr J(newplan Pt di d2 (arith3-+ d3)) :: rj (penv, deny) =
Trj[r] (penv{fp ý-+ arith3-+(d3 , (tt,t 2 ,t 3 ))}, denvy{dl - (pt, 1),d 2 - (pl, 2 )})

(tl, t2, t3 new)
Tr[(do p1)::r]J(penv,denv)=

(get-read-pointer t2 t3):: (req-send t3 ti) :: TrJrJ (penv, denv)
if penv(pt) = req-send(t1 , t2, t3)

Trf[(do Pl) :: r] (penv, denv) = Tr[rl (penv, deny) if penv(pl) = make-tuple(d1 )
Tr J(do Pt) ::r] (penv,denv) =

(arith3-+ t t2 t3 ) :: ( Trnsfr 6t3, nil, d1] (penv, denv)@ Tr [r) (penv, deny))
if penv(pl) = arith3-+(di, (t1, t 2 , t3 ))

TrI[(throw va dl) :: r] (penv, denv)=
( Zrnsfr [vi,,fli, dil (penv, denv)O. ... C Trnsfr[Vin,,fln, dl (penv, deny))a

Tr [r] (penv, deny)
where Decomp(Vh) {(vI 1,l) .. (vt,

Trnsfrivi, nil,djJ (penv, deny) = [(assign v, ti), (get-rqst-mbox-on t, t2 )]
if denv(di) = (pt, 1) and penv(pl) z req-send(ti, t2 , t3)

Trnsfrlrti,fl, dil (penv, deny) = [(setarg-remote vi t2 fl)]
if denv(d) = (Pl, 2 ) and penv(pt) = req-send(t1, t2, t3)

Tvnsfrivi,fl, dil (penv, deny) = Tnsfrl Jv, (i - 1) :: fl, d 21 (penv, deny)

if denv(d) = (pl, i) and penv(pl) - make-tuple(d2)

Trnsfrllv, nil, dil (penv, denv) = [(assign vi ti)]
if denv(dt) = (pi,i) and penv(pt) = arith3-+(d4,(tl,1 2,t3 )) (for 1 < i < 2)

Figure 2: Tianslation Function from Plan-Do Style Code into Lower-Level Code for
Pipelined Sends.

Trnsfr realizes data transfer to the destination d in the following way:

"s If d is for a target of request message send, the value is simply assigned to the tem-
porary variables for the target, but, immediately after that, it allocates a message
box for the pipelined send.

". If d is for an argument of a message, it generates a "remote write" instruction for
the pipelined send.

"* If d is for a tuple construction, it eagerly transfers the value to the more specific
field of d by recurrively calling Trnsfr.

"* If d is just for an arithmetic operation, the value is simply assigned to the corre-
sponding temporary variable.

Figure 3 shows the result of the conversion from the high-level code into lower-level
code for [obj1 <= [(+ i 1) (+ j 2)]]. The high-level code is also shown on the left
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Plan-Do Style Code Lower-Level Code
(neuplan (p1 dl d2) (request-send))
(throw obji dl) (assign objl-0 ti)(get-rqst-uboz-on ti t2) [*1)

(neuplan (p2 d3 d4) (make-tuple d2))

(newplan (p3 d5 d6) (arith3-+ d3))
(throw i d5) (assign i-O t4)
(throw I d6) (assign 1 t5)
(do p3 ) (arith3-+ t4 t5 t6)

(setarg-remote t6 t2 (0)) [*2)
(newplan (p4 d7 d8) (arith3-+ d4))
(throw j d7) (assign j-0 t7)
(throw 2 d8) (assign 2 t8)
(do p4) (arith3-4 t7 t8 t9)

(do p2) (setarg-reaote t9 t2 (1)) [*3)

(do pl) (get-read-pointer t2 t3) [*4)
(request-send t3 t1) [*5)

[*I] allocate a message tox t2 on the node of tU, [*2) pipetined remote write of i+1,

[*3) pipelined remote write of j+2, [*4) complete the initialization of ithe message box,
[*5) send the message box address.

Figure 3: Generated Lower Level Code for [objI <a( [(+ i 1) (+ j 2)))

habi side. Eager data transfers become manifest at (do p3 ) and (do p4), where the
elemte-ts of the tuple are eagerly sent to the pre-allocated message box on a remote node.
Note ti.t (do p2) does nothing because the tuple elements are already sent tý-erly.

4 Per"ormance Measurements

In this section, we demonstrate the effect of eager data transfer, especially pipelined sends,
via performance mua+ urements on a COOP language system ABCL/EM-4[8, 91.

The source language of ABCL/EM-4 is ABCIT/ST, a statically-typed ABCL language.
An ABCL/ST compilei for EM-4 has already been developed [7]. The compiler adopts the
following language hiera.rchy for each level of the abstraction of 'directly communicating
thread': (1) the source language, (2) high-level language (embodying the semantics of
the source language in terms of sequential execution of a single thread of control), (3)
middle-level language (introducing pointers for the purpose of implementation), (4) low-
level language (introducing the notion of data size and memory addresses), (5) I-language
(for optimization based on flow analysis), and (6) assembly language. The plan-do style
is mainly used for the high-level code to provide dataflow information without loss of
machine independence of the high-level code.

The compiler generates assembly code for a fine-grained hybrid parallel architecture
EM-4[4, 31, which was developed and built at Electrotechnical Laborat vries. EM-4 consists
of 80 processing elements and runs at 12.5 MHz clock speed, and facilitates a fine-grained
communication mechanism; for example, it provides a two-words size packet-output in-
struction which directly sends data from registers into its fast omega network. EM-4
hardware also provides basic scheduling mechanism for multiple threads, coupled with
its data-driven (packet-driven) feature. The term "hybrid" ind& the combination of
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Figure 4: Latency Comparison Between Pipelined/Non-Pipelined Sends

control-flow architecture and the data-driven architecture.
In this measurement, we compare the two implementation schemes of remote mess. e

passing: (1) the pipelined sends (see Section 2.1) and (2) the non-pipelined sends, in
which the communication is not initiated until all the message arguments are evaluated.

In order to measure the latency of remote message sends, our benchmark program
creates objects along a closed Hamilton path among the 80 nodes of EM-4, and sends
messages through the path. When an object O0 is activated by a message Mi from Oi-1,
Oi sends M,+1 to Oi+1 at the adjacent node along the path.

We measured the average activation interval of adjacent objects Oi and O,+1 for var-
ious sizes of messages. Figure 4 shows the results of the benchmark. As we can see, the
pipelined sends are always superior to the non-pipelined sends. The main reason is be-
cause the non-pipelined sends require additional memory accesses to buffer the message
arguments at the sender node; this fuffering is not necessary for the pipelined sends,
where the evaluated value on a register is sent directly into the network.

The latency given in Figure 4 includes not only the communication latency but also the
execution time of computation perfoiined by objects. Nevertheless, the minimum latency
is approximately 6.7 ps (83 clock cycles) for 4-word message size in pipelined sends, while
the difference between the latency in non-pipelined sends and the latency in pipelined
sends for 16-word message size is approximately 5.8 ps (73 clock cycles). These values
show that the impact of pipelined sends becomes relatively significant on architectures
where the remote communication is very fast.

5 Discussion

5.1 Moderate Eagerness
The idea of eager data transfer originates from the dataflow execution model. In the
dataflow execution model (the eager evaluation model), a large number of fine-grained
concurrency can be exploited, ideally resulting in perfect speed up of the execution. In
practice, however, the explosion of concurrency frequently causes problems, such as the
resource exhaustion and the network contention.
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In the thread-based execution model, concurrency can be easily bounded by the num-
ber of threads. Moreover, each thread execution can be efficiently performed by the use of
pipelines and registers. Recent approaches, such as TAM[21, attempt to take advantage of
this fact by resorting to compiler-assisted, highly-efficient thread-based execution model,
even for languages which have fine-grained lenient semantics.

Our approach introduces eagerness in the compilation of communication in the directly-
communicating threads model to exploit the fine-grained capabilities of recent architec-
tures. We note, however, this does not cause the same problem (explosion of concurrency)
as eager evaluation: in our approach, the eagerness appears only in the form of eager data
transfer, which does not include "fire" as in dataflow execution (which consists of eager
data transfer + matching + fire). The eagerness in our approach is still well moderated
by the thread-based execution model.

5.2 Scheduling
Our abstract machine model employs a simple hierarchy of scheduling, namely (1) schedul-
ing of threads and (2) scheduling of instructions. In ABCL/EM-4, scheduling of threads
is basically performed by the hardware at runtime, because EM-4 quite efficiently sup-
ports the scheduling of threads, including creation and termination of threads, with its
data-driven features. Instruction scheduling within a thread is the responsibility of the
compiler, and the plan-do style is employed for this purpose. But plan-do style actually
plays a more important role in instruction conversion between different abstraction levels.

5.3 Combining with Other Optimization Techniques
When an optimization based on dataflow information is already required at the higher-
level, generation of plan-do style code described in Section 3.1 is not necessary. In such
cases, only the conversion into the lower-level code described in Section 3.2 needs to be
applied for realizing eager data transfer.

For example, in array computations, [1] generates optimized code of 'directly commu-
nicating threads,' where the optimization is based on dataflow information (rather than
data dependency). In non-strict computations, [5] generates optimized code of 'directly
communicating threads,' by partitioning the dataflow graph. In both cases, by keeping
the dataflow information in the threads, our compilation scheme described in Section 3.2
would be extended to serve as a backend which supports their communication, when com-
piling into further fine-grained communication is desired for architectures such as EM-4.

6 Conclusion
We have presented a novel compilation-based approach to realizing high-throughput low-
latency communication for the execution models based on directly communicating threads.
We employed a compilation-based approach rather than a library-based one, exploiting
advanced implementation techniques for communication. In particular, we concentrated
on eager data transfer and described its compilation framework. We demonstrated the
effectiveness of eager data transfer when employed with compiled pipelined sends, via
performance measurements on a fine-grained hybrid parallel architecture EM-4.

In order to realize eager data transfer, dataflow information is indispensable to code
conversion. The compiler must provide additional dataflow information even at the levels
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where optimization techniques based on dataflow information are not applied. This re-
quirement causes a difficulty in combining several compilation phases into one pass. Our
plan-do style intermediate code solves this problem by representing the combination of
control-flow information and data-flow information in a stream form.
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Abstract: Cache coherence mechanisms in shared-memory multiprocessors typically use
either updating or invalidating to prevent access to stale data, but neither enforcement
strategy is the best choice for all programs. We present a compile-time optimization
that uses the look-ahead capability of the compiler to select updating, invalidating, or

neither for each write reference in a program to thereby produce the best overall memory
performance. We implement this optimization in the Parafrase-2 compiler for memory
references to scalar variables and use trace-driven simulations to compare the performance
of this compiler-assisted adaptive coherence enforcement to hardware-only mechanisms.
We find that this compiler optimization can produce miss ratios comparable to those
produced by an updating-only mechanism while frequently reducing the total network
traffic to below that produced by any of the hardware-only mechanisms.

Keyword Codes: B.3.3; C.1.2; C.5.1
Keywords: Performance Analyis and Design Aids; Multiple Data Stream Architectures
(Multiprocessors); Large and Medium ("Mainframe") Computers

1 Introduction

In a shared-memory multiprocessor with private data caches, each processor may have
a copy of the same memory location resident in its cache. To ensure correct program
execution in such an environment, some coherence mechanism, such as invalidating or
updating, is required to prevent access to stale data. An invalidating mechanism maintains
coherence by requesting exclusive access to a shared memory location before a write
operation. This exclusive access request causes all other cached copies of the memory
location to be marked as invalid in each processor's cache. Any references to an invalid
copy cause a cache miss and thereby force the processor to access the most recent copy
of the memory location from the globally shared memory. The updating strategy, on the
other hand, ensures coherence by distributing the newly written value of a cached memory
location to all other caches with a valid copy every time the location is written.

Several studies [11, 1, 19, 13] have shown that, in general, neither an updating mech-
anism nor an invalidating mechanism alone can produce the best overall performance.

This work was supported in part by National Science Foundation grants CCR-9209458 and CCR-
9210913.
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For some programs, updating will produce the lowest average memory delay, while for
other programs, invalidating produces the best result. In fact, updating may produce
better performance during some phases of a program's execution while invalidating may
be preferable in other sections of the same program.

Hybrid adaptive schemes attempt to combine the best aspects of both strategies. Most
of these schemes, supported by different types of hardware mechanisms, switch between
updating and invalidating at run-time based on the program's memory referencing behav-
ior [3, 15, 21, 12, 5, 61. Some researchers acknowledge the potential of using the compiler
to choose between updating and invalidating [16, 2], but they have not developed algo-
rithms for performing this switching. We have recently proposed an adaptive scheme [18]
that utilizes compile-time information to identify write references that require coherence
enforcement and to select updating or invalidating for each of these references.

In this paper we present specific compiler algorithms to perform the type of coherence
enforcement marking mentioned above. We implement these algorithms in the Parafrase-
2 parallelizing compiler (20]. Trace-driven simulations are used to determine the perfor-
mance improvement of this compiler-assisted scheme compared to nonadaptive schemes
and to adaptive schemes that use only run-time information. The ideas in this paper
apply to both scalar and array references. However, due to the lack of precise array data
flow analysis in the compiler used for the experiments, we focus on scalar references only.
We always use write invalidation for array references. Currently, we are developing a
compiler that will include exact array dependence analysis allowing us to handle array
references in our future work.

1.1 Program Model and System Assumptions

In this work, we consider the parallel execution of programs in the form of DOALL
loops. A DOALL loop cannot have any data dependences between different iterations. In
addition, it will terminate only when all iterations are completed. Due to the complexity
of nested DOALL loops, we consider only singly-nested DOALL loops. If several nested
loops are parallelizable, we make the outermost one a DOALL loop. Processors may
be assigned at the entry and the exit of a DOALL loop, which we will call a boundary.
All synchronizations occur at these boundary points. We assume that the hardware will
provide the necessary support for synchronization.

For our simulations, we assume a system of multiprocessors that are connected to the
shared memory via a packet-switched multistage interconnection network. Each proces-
sor has a private data cache. Sequential regions of a program (i.e. those that are not
DOALL loops) are always executed by the same processor. The system has a directory
to monitor which processors have a valid copy of each block. There are several variations
of directories (8, 4, 9, 14], any of which can be used with this compiler optimization.
Here we adopt a directory structure similar to Censier and Feautrier's [8] in which each
memory module is associated with its own directory. We also assume that each processor
may issue three types of writes: wrt-up, wrt-inv, and wrt-only. The wrt-up and wrt-inv
instructions are used to write a shared-writable block and invoke either an updating or
an invalidating coherence enforcement strategy, respectively. The wrt-only instruction is
used for references which cannot cause incoherence. The compiler's task is to identify how
each write reference should be marked, and then generate the corresponding instruction
to perform the necessary type of write operation.
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(1) y a +b
(2) y y * y - last write to y
(3) IF (x > 5) THEN
(4) y = x + y - last write to y
(5) ELSE
(6) x = 0 -- last write to x - coherence write to x
(7) ENDIF

---< boundary >-
(8) DOALL i=l, 10
(9) A[i]=x+i

(10) END DOALL
-< boundary >-

(1) .... x + y

Figure 1: An example of a program segment showing how the writes are marked.

2 Compiler Analysis

The algorithm in this work applies to individual routines separately, although it can also be
extended to an interprocedural analysis. The analysis consists of two primary components:
1) marking those writes that may require coherence enforcement by calling functions
find-last writes and identify-write-only; and 2) choosing the appropriate coher@nce action
(updating or invalidating) for these writes by calling functions estimate-degree-of-sharing
and determine-write-type.

2.1 Marking last writes and recognizing wrt-only

Not all write references need to incur coherence enforcement actions. For example, if the
value written by a processor will be overwritten by the same processor, and thus will not
be used by any other processors, then the coherence enforcement can be delayed until the
last write which can potentially be followed by a read of that block by a different processor.
The first part of our analysis is to recognize these last writes. The remaining writes cannot
produce values used by other processors and, therefore, cannot create incoherence. These
writes can be safely marked as wrt-only.

The function find-last-writes identifies the writes that can reach the end of a parallel
or sequential region. These last writes can potentially cause cache incoherence. First, the
function finds all boundaries in a routine. Next, for each boundary node, B, a control
flow subgraph (CFS), F(B), is constructed. F(B) contains all program segments that are
reachable from B without crossing another boundary. After the CFS is built, the fli,,ction
mark-last-write is called to mark the last writes. This function is a simple variation of the
iterative algorithm commonly used to find the reaching definitions. The reach sets of all
leaf nodes in the CFS contain the last writes. Any other writes are marked as wrt-only.
Figure 1 shows an example of how the last writes are marked. In this segment of code,
the write to y on line 4 and the write to x on line 6 will be marked as last writes since
they are the last writes before the boundary is crossed. We must also mark the write to
y on line 2 as a last write since the path taken at the if-statement cannot be determined
at compile-time. The write to y on line 1 is not a last write so it can be marked wrt-only.
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Not all of the last writes marked by the function find-last writes will cause cache inco-
herence, however. Some of these writes may never reach a read by a different processor.
The ones that will not be read by another processor are marked as wrt-only in function
identify-write-only. The remaining last writes are called coherence writes. In our example
in Figure 1, if we assume that the analyzed routine ends on line 11, the values of y written
on lines 2 and 4 will never be used by a different processor and, hence, those writes are
not coherence writes and will also be marked as wrt-only. We determine that a write can
reach a read by another processor by computing upward exposed uses [10, 17]. Since this
is a familiar subject, we omit the details.

2.2 Determining coherence actions for the coherence writes

Any writes that are not marked as wrt-only in the previous step are writes which may
cause cache coherence problems. To choose between write-update and write-invalidate,
the compiler must consider the cost of using each strategy for each write reference. In
this paper, we define the cost to be the total network traffic. For instance, for a given
write reference, the cost of using invalidating depends on the network traffic produced
by the invalidation messages, plus the traffic produced by the cache misses generated by
those processors which reference the block after the write. The cost of using updating,
however, depends on the number of processors that have a copy of the block cached when
the write occurs since each of these processors must receive an update message.

To approximate the required numbe," of update or invalidate messages we estimate
the degree of sharing, which is the number of processors that have a cached copy of the
referenced block, before and after the write. For updating, the degree of sharing before
the write is a good estimate of the number of update messages that must be sent. This
sharing then can be used to estimate the cost of using updating. The degree of sharing
before the write also is used to estimate the cost of sending the invalidation messages.
In addition, the number of misses expected to be generated by processors reading the
block after the write is estimated by the degree of sharing after the write. The cost of
invalidating is then the sum of the cost of sending the invalidation messages and the
read misses. After estimating the cost of each strategy, the compiler marks the write
reference as wrt-up if the cost of updating is lower than invalidating. Otherwise, the write
is marked as wrt-inv. Note that the actual cost of these operations is a function of the
implementation details of the specific multiprocessor.

For scalar variables, the cost estimation can be simplified even further. The degree of
sharing before or after a scalar write can be one of only three cases:

* 0, if the variable is not referenced before or after the write;
* 1, if the variable is referenced only in sequential regions before or after the write;
* p, if the variable is referenced in one or more parallel regions, where p is the number

of processors.
We use p to denote the degree of sharing of scalar variables referenced in a parallel

region since in a parallel region, a referenced scalar is usually shared by all or most of
the processors. If a scalar is written in a sequential region and later is read in a parallel
region, we say the degree of sharing after the write is p. In this case, the cost of the read
misses after the write plus the invalidating cost during the write would exceed the cost of
updating, no matter how many processors have a copy of the variable before the write.
This is because reading copies of the missing data incurs at least the same amount of
network traffic as sending copies of the data. In addition, a write-invalidate requires some
invalidating traffic. Therefore, in this case, we mark the write as wrt-up.
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If the degree of sharing after a write is 0 or 1, we cannot be sure of the exact degree
of sharing without interprocedural analysis. We do know, however, that a degree of I
means that the writing processor reads the variable again and that a degree of 0 means
that the writing processor will not reference the variable again within this routine. In the
latter case, the variable will most likely be referenced again outside the routine by all p
processors. Hence, we can mark those writes with a degree of sharing of 0 after the writes
as wrt-up (again because the read miss and invalidating cost wo,!d outweigh the updating
cost). Similarly, if the degree of sharing after a write is 1, the variable will likely not be
referenced by other processors. Therefore, we can mark such writes as wrt-inv. Hence,
for scalar variables, the calculation of the costs is simplified to determining the degree of
sharing after the write.

We denote the degree of sharing of each variable by a 2-tuple < var, count"' >, where
countv"r is the degree of sharing of the variable var. We estimate the degree of future
sharing by using an accumulating operator defined as follows.

Definition of the accumulating operator: Let VAR be 'he set of all scalar variables
in the analyzed routine. Suppose si is a set of variables and their estimated degrees of
sharing such that si {< var, count•ar >IvrevAR} where = 1,2, ...,k. Then,

(sl,s2,...,sk) = { < var, max(count,,r, count"r,..., count"') >lavAR1

The accumulating operator, 9, is used to accumulate the degree of future sharing
through an execution path which does not contain any branching points and to estimate
the degree of future sharing at any branching point of several potential execution paths.
When accumulating the degree of sharing through an execution path, we take the maxi-
mum degree of sharing of each scalar variable since this number represents the number of
processors that may have a copy of the variable during the execution of this path. Like-
wise, at the branching point of several potential execution paths, we select the maximum
degree of sharing of a variable in these paths to represent the potential degree of future
sharing of the variable. We make this selection because it represents the best choice in
many frequent cases. For example, since the number of iterations of a )OALL loop typ-
ically will be far greater than the number of processors, a processor will execute many
iterations. If a scalar is referenced in any potential execution path, then by executing
several iterations, a processor will very likely reference the scalar at run time. If a scalar
is read in a serial loop, its reference in any potential execution path makes it even more
likely to be referenced at run time.

To estimate the degree of sharing for all scalar variables, we propagate two sets,
RA-in and RA-out in the backward order and we iterate until these two sets become
stable. The function estimate-degreeooflsharing estimates such sharing information. To
make the explanation of this function clearer, the sets involved in the estimation of the
degree of sharing are described here:

* rb - a set of < var, count,"a > tuples for a basic block. If there is no coherence
write to var in the basic block, b, then

J 0, if var is not referenced in b;
countvar = 1, if var is referenced in b in a sequential region;

p, otherwise.
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If there is a coherence write to var, then

0, if var is not referenced before the write in b;
count... = 1, if var is referenced before the write in b in a sequential region;

p, otherwise.

"* RA-in - the set of < var, counjt" > tuples accumulated at the bottom of a basic
block during the backward propagation.

"* RA.out - the set of < var, count"' > tuples that will be propagated outside a basic
block.

The set RA-in of each flowgraph node contains the degree of sharing information given
by the successors of the node. When a node has moie than one successor (i.e. a branching
point), we estimate the degree of future sharing by using the accumulating operator 0
defined earlier. To obtain the RA-in set, we need the set RA-out, which contains the
degree of sharing information for variables which are not killed by the coherence writes in
the node. We must also include the degree of sharing information local to a node, the set
rb, that can be live outside the node in the RA-out set. When accumulating the degree
of sharing information, we again use the 0 operator.

After obtaining the necessary degree of sharing information, we can determine the cost
of updating and invalidating for a coherence write reference. As discussed earlier in this
section, the costs for scalar writes are simplified to examining the degree of sharing after
the writes. The function determine.write-type uses the degree of sharing obtained from
function estimate-degree-of-sharing to mark the coherence writes as wrt-up or wrt-inv. In
the example in Figure 1, for instance, the coherence write to x on line 6 will have an RA
count (degree of sharing after the write) of p. Note that after this coherence write, x is
referenced in the DOALL loop on line 9 and, therefore, will have a degree of sharing of
p. It is referenced again in the serial section on line 11 with a degree of sharing of I.
When estimating the degree of sharing, the accumulating operator yields p as the degree
of sharing of x after the write on line 6. Since the RA count for x at this point is p, the
coherence write to x will be marked as wrt-up.

3 Simulation Methodology and Results

We compare the relative effectiveness of invalidating-only [8), updating-only, a dynamic
adaptive scheme that uses only run-time information, and our compiler-a~sisted adaptive
scheme with respect to the miss traffic and the coherence traffic on several of the Perfect
Club benchmark programs (7]. The miss traffic is the miss ratio times the number of bytes
requ", ed to service a miss. The coherence traffic includes the invalidating, updating, write-
back, ind write-through traffic necessary to maintain coherence among the caches and
the shared memory. The updating scheme uses write-update instead of write-invalidate
to enforce coherence. The dynamic adaptive scheme enforces coherence similar to the
updating protocol as long as the number of consecutive writes to the same block with
no intervening cache misses (read or write) is less than a predefined threshold value.
When the number of consecutive writes to a block reaches this threshold value, all cached
copies of the block, except for the writing processor's copy, are invalidated. This dynamic
adaptive scheme is our directory-based variation of the bus-based adaptive schemes [3, 151.
A detailed discussion of these protocols can be found in (18].
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Separate forward and reverse networks with 32-bit data paths connect the 16 proces-
sors to the shared memory. Each packet requires a minimum of two words: one word
for the source and destination module numbers plus a code for the operation type, and
another word for the actual memory block address. One or more additional words are
used for fetching and writing data, or for sending data updates to other processors.

The Parafrase-2 compiler is instrumented to generate a trace of the memory addresses
produced by each of the 16 processors. These traces are randomly interleaved into a
single trace following the fork-join parallelism model. To simulate the compiler-assisted
adaptive scheme, the Parafrase-2 compiler marks the memory references using the marking
algorithm described in Section 2. The marked trace then drives a cache simulator to
determine the miss and coherence traffic.

To focus on the performance of only the compiler optimizations, an infinite size, fully
associative cache with a block size of one-word is used in each of the processors. To
evaluate the performance of this scheme in a more realistic environment, we varied the
block size of a 2 Kword cache from 1 to 2 and 4 words using three different block placement
policies: direct-mapped, 4-way set-associative, and fully associative. However, since the
simulations with different placement policies showed no significant difference, only the
simulation results of the set-associative cache is included in this paper. All instruction
references are ignored since they can never cause any coherence problems. Since we are
interested in the effect of coherence enforcement only on data references, synchronization
variables are not considered in these simulations.

Figure 2(a) shows both the miss and the coherence network traffic for scalar refer-
ences only. The ideal compiler result uses the traces to simulate a compiler capable of
performing perfect memory address disambiguation, perfect interprocedural analysis and
perfect branch prediction. The real (Parafrase-2) compiler, on the other hand, must be
conservative when a branch, an array reference, or a procedure call is encountered. While
the ideal case optimizes both array and scalar references, the real compiler optimizes only
the scalar references.

As shown in Figure 2(a), the compiler-assisted scheme is quite effective in reducing
the total network traffic. In fact, the miss traffic and, therefore, the miss ratio, generated
by the ideal compiler and the real compiler is up to 99 percent lower than the invalidating
scheme and the dynamic adaptive scheme. This improvement in misses is due to the
frequent selection of an updating protocol at compile-time. While the miss traffic of the
compiler-assisted scheme is almost the same as the miss traffic generated by the updating
scheme, the coherence traffic is 49 to 98 percent lower than the updating scheme. It
also is up to 98 percent lower than the dynamic adaptive scheme. The coherence traffic
of the three hardware-only coherence schemes is mainly due to the unnecessary block
updates and invalidates. A comparison of the ideal and the real compilers indicates that
the analysis described in Section 2 is marking most of the write references as well as the
ideal compiler can mark them. The performance difference between the two compilers is
primarily due to procedure calls and branches that are ignored in the ideal case.

While the previous discussion considered only scalar references, Figure 2(b) shows the
simulation results with both array and scalar references. As shown in this figure, the miss
traffic generated by the real compiler is higher than the dynamic adaptive scheme due to
the marking of all array references as wrt-inv at compile-time. Nontheless, the ideal case
indicates that the total network traffic can be potentially lower than that generated by
the dynamic adaptive scheme.

As shown in Figure 3, a cache block size greater than a single word increases the total
network traffic due to the false sharing effect. A comparison of the real compiler-assisted
scheme with the invalidating scheme indicates that the total network traffic is comparable
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inv cai cmu dyn9 up inv Cai Car dyn9 up Inc n.i c. dyn9 up inv Cai C. dyn9 up

(a) Only Scalar references

5, I

3-

- 0

inv cai car dyn9 up inv Cal cam dyn9 up inv Cal Car dyn9 up inv Cal car dyn9 up

(b) Scalar and Array references

inv: invalidate
caiý compiler-assisted adaptive with an ideal compiler 0
car: comp iler-_assisted adaptive with a real compiler

dyn9: dynamic adaptive with threshold value of 9

up: update

Figure 2: Total network traffic.

to that generated by the invalidating scheme while reducing the miss traffic and, therefore,
the miss ratio. The lower miss traffic produced by the real compiler-assisted scheme is
primarily due to the switching between updating and invalidating.

4 Conclusion

The compiler-assisted adaptive scheme can generate i,,wer miss traffic and, thus, lower
miss ratios, than the invalidating scheme while reduciug the total network traffic to below
that generated by the updating scheme, in all of the test programs. As a result, we
conclude that the performance of a multiprocessor system can be improved by using the
predictive ability of the compiler to select the best cache coherence protocol for each
memory reference.
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Abstract: In this paper, the performance of a fine-grain data synchronization scheme is
examined for both invalidate-based and update-based cache coherent systems. The work
first reviews coarse-gain and fine-grain synchronization schemes and discusses their ad-
vantages and disadvantages. Next, the actions required by each class of cache coherence
protocols are examined for both synchronization schemes. This discussion demonstrates
how invalidate-based cache coherence protocols are not well matched to fine-grain syn-
chronization schemes while update-based protocol are.

To quantify these observations, five scientific applications are simulated. The results
demonstrate that fine-grain synchronization always improves the performance of the appli-
cations compared to coarse-grain synchronization when update-based protocols are used,
but the results vary for invalidate-based protocols. In the invalidate-based systems, the
consumers of data may interfere with the producer. This interference results in an in-
crease in invalidations and network traffic. These increases limit the possible gains in
performance from a fine-grain synchronization scheme.

Keyword Codes: B.3.3; C.1.2
Keywords: Performance Analysis and Design Aids; Multiple Data Stream Architectures
(Multiprocessors)

1 Introduction
In shared-memory multiprocessors, data is often shared between a producer and one
or more consumers. To prevent the consumers from using stale or incorrect data, the
consumers must not access the data until the producer notifies them that it is available.
Typically, such systems use a coarse-grain synchronization scheme to synchronize this
production and consumption of data.

In such schemes, simple flags can be useo to indicate that a given block of data has
been produced. For example, the producer of a data block first writes the data to a
shared buffer and then issues a fence instruction that stalls the processor until all writes
have been performed. Finally, the producer sets the synchronization flag. The consumers,
who have been waiting for the synchronization flag to be set, see the flag set and begin
consuming the data. Coarse-grain schemes may also use other synchronization methods
such as barriers. The coarse-grain synchronization schemes examined assume a release
consistency memory model [2].

A coarse-grain synchror'zation scheme has two basic disadvantages. First, the scheme
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requires an expensive synchronization operation such as a flag or barrier to synchronize
the production and consumption of data. Second, the consumers are forced to wait until
the entire data block has been produced before they are able to begin consuming the data.

An alternative to the coarse-grain synchronization scheme discussed above is a fine-
grain scheme. In such a scheme, the synchronization information for each data word is
combined with the word. In this case, the producer creates the data and writes it to a
shared buffer. The consumers wait for the desired word to become available and then
consume it.

Fine-grain synchronization has several advantages. First, the consumers are able to
consume data as soon as it is available. This allows the consumption time of the available
data to overlap the production time of the subsequent words. Moreover, no expensive
synchronization operation is required; this means that the producer never needs to wait
for the writes to be performed.

In this work, we are interested in studying the performance gains from a fine-grain
synchronization scheme on scalable, cache coherent shared-memory multiprocessors. We
will show that fine-grain synchronization may improve performance of applications run-
ning on systems with either invalidate-based or update-based cache coherence protocols,
but that fine-grain synchronization is not a robust solution for invalidate-based systems
while it is for update-based systems.

The paper is organized as follows. Section 2 describes a typical coarse-grain syn-
chronization schene and demonstrates the resulting work required by each class of cache
coherence protocols. Next, section 3 describes a fine-grain synchronization scheme and
demonstrates how the scheme overcomes the disadvantages of the coarse-grain scheme.
Section 4 describes the simulated architecture, the scientific applications and the cache co-
herence protocols examined in this work. Section 5 presents the simulation results. These
results compare the performance of fine-grain synchronization to coarse-grain synchro-
nization, and they also compare the relative performance of the cache coherence protocols
when fine-grain synchronization is used. Finally, section 6 concludes the paper.

Our work is the first to examine the performance of fine-grain synchronization on
both update-based and invalidate-based cache coherent multiprocessors. The work on
the Alewife [61 system examines the implementation details of a fine-grain synchroniza-
tion scheme, and their work gives an excellent description of the software and hardware
requirements for such a scheme. In their work, they demonstrate that a fine-grain syn-
chronization scheme may improve the performance of the given applications running on an
invalidate-based cache coherent system. Our work does not contradict their findings, but
rather expands them to demonstrate the instability of the combination of invalidate-based
cache coherence protocols and fine-grain data synchronization.

2 Coarse-grain data synchronization

Figure la shows the actions required for invalidate-based protocols using a coarse-grain
synchronization scheme. After producing the data, the producer writes it to a shared
buffer and waits for the writes to be performed. The writes are considered performed
when the producer's cache has obtained exclusive ownership of the line (all necessary
invalidations have been performed) and the data has been written into the cache. The
figure assumes that the producer has already obtained exclusive ownership of the data
lines. After the writes ha we been performed, the producer sets the synchronization flag. If
the consumers have already read the flag, then this write must invalidate the consumers'
copies of the flag. The consumers, who are still waiting for the flag to be set, will imme-
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diately reread the flag after it is invalidated, but the producer cannot release the flag's
line until all the invalidations have been performed. Once the consumers see the flag set,
they can begin reading and consuming the data.
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Figure 1: Coarse-grain synchronization

Figure la illustrates the cost of a coarse-grain synchronization scheme using a simple
flag. The invalidation and reread of the flag by each consumer requires four network
transactions and the transfer of a line of data. The work to transfer the synchronization
information is more than the work to transfer one line of data. The size of the data block
could be increased to reduce this synchronization overhead, but the larger block size also
increases the waiting time of the consumers.

Figure lb shows the actions required for update-based protocols. In this case, all
of the consumers have prefetched the synchronization flag and data block before the
data is written. When the producer writes the data, the consumers' caches are updated.
The producer must wait for the writes to be performed (all updates acknowledged) before
setting the synchronization flag. The producer's write of the flag results in the consumers'
caches being updated. When the consumers see the flag updated, they can begin using the
data, which is already in their caches. Figure Ic shows the resulting network transactions
if a write-grouping scheme, as described in our earlier work [5, 4], is used. In this case,
the data updates are grouped into larger, more efficient updates.

As in the invalidate-based case, the coarse-grain synchronization scheme has disad-
vantages. First, the cost of the coarse-grain synchronization operation is high. But the
cost is not in transferring the synchronization information itself, it is in waiting for the
updates to be performed (acknowledged). This synchronization scheme also forces the
consumers to wait until the synchronization point is reached before accessing the data,
but, unlike the invalidate-based case, the desired data is already in the consumers' caches
as a result of the earlier updates. The coarse-grain synchronization scheme does not allow
the system to take advantage of these fine-grain updates.
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3 Fine-grain data synchronization

A fine-grain synchronization scheme would overcome many of the disadvantages of the
coarse-grain scheme described in the last section. In a fine-grain synchronization scheme,
the synchronization information is combined with the data. Such a scheme may be im-
plemented in either hardware or software. In a hardware-based scheme, a full/empty bit
is associated with each memory word [8]. Alternatively, a software-based scheme may be
used in which an invalid code, such as NaN in a floating point application, is used to
indicate an empty word. Currently, all the applications under study use a software-based
scheme.

Figure 2 demonstrates how a producer and consumer interaction might be coded for
both coarse-grain and fine-grain (using a software-based scheme) data synchronization.
For the coarse-grain case, a simple flag, initialized to false, is used to synchronize the
production and consumption of data. For the fine-grain case, the data is initialized to an
invalid code. The consumer waits for each word to become valid and then consumes it.
For iterative applications, the data must be set to the invalid code between iterations.

Coarse-Grain: Fine-Grain:
Producer:. EW
shared alConti; shared alCosntl - INVALID
shared flag = faLe;

/ Produce Dta *I
/PProducedata'/ (orifi ; i c,•c.ot i-c))
for(, 0 0; i < Cont; i++) alil - fO;

alil = fO;
P Wait for writes to ctxnplete /
fenceO;
/. Set Flag
flag - true;

Consumer. Consumer.
shared a[Centl; shared alcowatl;

/-Waftfomflag/ /"Consumeali] /
while (flag - false); for (i f O; i < count; i++) I
P Consmae ali / /* Spin waifingfordata /
for (i -O; i <Cosst; i++) while (ali] u INVALID);
bil] ftalil); bil fi f(ai);

Figure 2: Code examples for coarse-grain and fine-grain synchronization

By their very nature, invalidate-based protocols are not well matched to fine-grain
synchronization schemes. The protocols do not allow consumers to maintain copies of a
data line while a producer writes to the line. This results in a very unstable solution.
Figure 3a shows the ideal timing diagram for invalidate-based protocols when a fine-grain
synchronization scheme is used. First, all the consumers read the first word of the data
block. When the producer writes this word, all the consumers' copies must be invalidated.
But since the consumers are eagerly waiting for the data, they will immediately reread the
data line once it is invalidated. The invalidate-based protocols studied allow the producer
to continue writing into the cache line while invalidations are pending. This prevents the
producer from observing any write delay as the consumers read and reread the line. In
the ideal case, the invalidation latency is greater than the producer's write time for the
line. When the consumers reread the line, they will find the line completely written. The
producer will not invalidate the line again; this gives the consumers all the time they need
to consume the line's data for this ideal case.
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Figure 3: Fine-grain synchronization

However, figure 3b demonstrates the problem with invalidate-based protocols and
fine-grain synchronization schemes. In this case, the consumers have reread the line after
the initial invalidation but before the producer has completed writing the data. Now
the producer is required to invalidate the consumers' copies of the line again, and the
consumers are forced to reread the line. The producer is able to release the line again
only after all the pending invalidations have been performed.

The relative timing of the writes and reads will have an enormous impact on the
performance of the system. If the writes occur in bursts, as they often do, the producer
will usually be able to produce many words of data between each reread by the consumers.
But the consumers, who will reread the line immediately after it is invalidated, will only
receive the data after all the consumers' copies of the line have been invalidated. The
consumers will then be able to consume data only until the producer invalidates the line
again, which may occur soon after the consumer receives the data if the write rate is high.

The frequency with which these invalidations and rereads occur depends on two char-
acteristics of the application. First, the probability that the producer finishes writing the
line before the consumers attempt to reread it depends on the number of words written
to the line. This measure, known as the line utilization, will be used to classify the appli-
cation space. The other characteristic is the number of consumers. The more consumers,
the higher the probability that consumers will interfere with the producer's writing of the
data.

The definition of update-based protocols offer a better match to fine-grain synchro-
nization schemes. Unlike the invalidate-based protocols, update-based protocols allow
consumers to maintain a copy of the data line while a producer writes to the line. Also,
the producer's write of the data results in an update of all the consumers' caches: a
proactive distribution of data rather that a reactive approach as in the invalidate-based
protocols in which each consumer is responsible for refetching an invalidated line. For
example, figure 3c shows the actions required for update-based protocols using fine-grain
data synchronization and write grouping. First, all the consumers prefetch the desired
data lines. As the producer writes the data, the writes are grouped and sent to the
consumers, and the consumers can consume the data as soon as it arrives.

Lmmm lm • l m
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Update-based protocols can also take advantage of the fine-grain synchronization
scheme in another way. Update-based protocols using a coarse-grain synchronization
scheme require that updates be acknowledged before the synchronization flag is set, but
in a fine-grain synchronization scheme, no update acknowledgment is needed because
the producer is never required to wait for the updates to be performed. This has the
largest impact on the distributed-directory update-based (DD-UP) protocol described in
our earlier work [4].

The update-based protocols offer a much more robust solution. The data prefetch
cannot degrade the performance of the fine-grain synchronization scheme as it can with
the invalidate-based protocols [4]. The prefetch can be issued as early as desired by the
consumers. Also, the relative timing of the producer's writes and consumers' reads can
not affect performance as in the invalidate-based protocols. The amount of work is fixed
regardless of any variations in the timing of reads or writes.

4 Simulation methodology

The Care/Simple simulation environment [1] was used to simulate a set of scientific appli-
cations running on a shared-memory multiprocessor. The simulated architecture consists
of 64 nodes arranged in an 8 by 8 mesh. Each node consists of a processor/memory
element (PME) connected to its four nearest neighbors through a set of network queues.
A PME consists of a processor, cache, directory/memory and network interface. The
processor is a 100 MHz superscalax processor that is assumed to be load/store limited,
and the cache is a fully associative cache with infinite size. The cache has a single cycle
access time and a line size of 16 words. Each memory consists of a single bank of 100 MHz
synchronous DRAMs supporting page mode operation. The SDRAMs have 30 ns access
time for a page access with a page miss penalty of an additional 60 ns. The directory
consists of a 10 ns access time SRAM for all protocols. The network is order preserving
with static, wormhole routing and multicast.

The applications studied here include a simple, iterative partial differential equation
solver (PDE), a 3-D iterative partial differential equation solver using FFTs (3DFFT),
and three different methods of factorizing a matrix into triangular matrices: a multifrontal
solver (MF), sparse Cholesky factorization (SPCF), and LU decomposition.

Table 1 summarizes the important characteristics of the applications studied. The
number of consumers for each data block gives a measure of general contention for each
object and the maximum number of invalidates or updates that might be needed when
the data is modified. The line utilization is the percentage of each memory line that is
modified by the producer. For example, if the data is a dense vector, the producer is
likely to modify all the words in the given line. This would result in a line utilization
of 100%. If the data is a structure, the producer might only modify a few words, which
would result in a low line utilization. In the invalidate-based protocols using fine-grain
synchronization, these measures give an indication of the possible interference between
the consumers and producer of a line of data. The larger the line utilization or number
of consumers, the higher the probability of interference and extra invalidation and reread
cycles. The table also indicates the type of the coarse-grain synchronization: a simple
flag or barrier. The table specifies which applications are iterative and shows both the
number of synchronization events in each application and the average number of words
protected by each synchronization event.

The update-based protocols examined in this paper include the centralized-directory
update-based protocol (CD-UP) and the distributed directory update-based protocol
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I Applications [ MF [ PDE [ SPCF I LU 3DFFT I
Data Set (words) 1000xi000 32x32 1138x1138 64x64 8x8x16
Consumers I 1 1.89 31.5 4
Line Utilization % 93.0 50.0 11.2 59.0 50.0
Sync Type Flag Fir Flag Flag Barrier
Iterative No es No No Yes
Sync Events 332 1120 2118 2016 678
Wo•rds/9yc Event 49.8 8.0 4.S 44.4 , 18.6

Table 1: Application characteristics

(DD-UP) described in our earlier work [4, 3]. The update-based protocols use the write-
buffer grouping scheme also described in our earlier work [5]. The invalidate-based proto-
cols examined include a centralized directory invalidate-based protocol (CD-INV), which
is similar to DASH [7,, a singly-linked distributed directory invalidate-based protocol
(SDD) 19] and a doubly-linked distributed directory invalidate-based protocol (SCI), which
is the IEEE standard protocol.

5 Results

The relative performance of the fine-grain synchronization scheme compared to the coarse-
grain scheme and to a common base (CD-INV) is illustrated in figure 4. Table 2 gives
the ratio of invalidations (updates) required and the relative change in total network
traffic for the fine-grain synchronization case compared to the coarse-grain case for the
invalidate-based (update-based) protocols.

Relative Fine-Grain Execution Time

Relative Execution Time

230

a) Fine-grain exec-ution time compared to coarse-grain b) Exec'ution time compared to common base (CD-INV)

Figure 4: Performance of fine-grain synchronization

For the invalidate-based protocols, the performance of the fine-grain synchronization
scheme varies. For the applications with small blocks a~,d few consumers (PDE and

• -*-- - •.m ,,•mmm~um,*mn ME
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Invalidate-Based Protocols Upcdate-Based Protocols

Ratio of invalidations Ratio of network traffic Ratio of updates Ratio of network traffic
CD-INV SOD SCI CNV SV SDD SCI D--UP DD-UP CD-UP DD-UP_

PDE 0.93 0.93 0.93 0.67 0.55 0,51 1.85 1.91 0.87 1.09
SPCF 0.94 0.97 0.95 0.41 0.51 0.50 0.73 0.73 0.4u 0.44

MF 10.7 7.08 4.07 0.81 0.81 0.80 0.98 0.84 0.84 0.84

3DFFT 1.00 1.08 1.14 0.98 1.07 0.99 1.38 1.38 0.84 1.13

UJ E4.42 3.67 3.42 1.24 1.32 .. 59 0.40 0.41 0.34 0.71

Table 2: Ratio of invalidations/updates and network traffic

SPCF), the fine-grain synchronization scheme improves the performance of tile appli-
cations compared to the coarse-grain synchronization case. In these applications, the
coarse-grain synchronization operation is costly, as each synchronization point protects
only a small block of data: 8 words for the PDE application and 4.9 words for the SPCF

application, as summarized in table 1. Therefore, the elimination of this coarse-grain
synchronization operation outweighs any extra invalidations or network traffic genero-ed
by the fine-grain scheme. The fine-grain synchronization has actually reduced the total
number of invalidations compared to the coarse-grain case for these two applications, as

illustrated in table 2 for all the invalidate-based protocols. With the small block ,izes

of these applications, the producer was able to write the full block before the consumers
could reread the line after the initial invalidation. The single invalidation per block acted

as a synchronization or triggering event. The elimination of the explicit synchronization
also significantly reduced the network traffic for these applications, as shown in table 2.
This resulted in an improvement in execution times for the PDE and SPCF applications,
as shown in figure 4a for the invalidate-based protocols.

As the line utilization increases, the consumer and producer interference also increases.
For the MF application, the number of invalid-tions was small for the coarse-grain syn-
chronization case. This indicates that the consumers were not always eagerly consuming
the data. The fine-grain synchronization increased the number of invalidations signifi-
cantly, but the overall traffic was reduced since the extra invalidation traffic was less than

the traffic eliminated by the elimination of the explicit coarse-grain synchronization events.
The actual execution time increased for the CD-INV and SCI protocols, but decreased
for the SDD protocol. The difference in execution time between the invalidate-based pro-

tocols arises from the particular producer-consumer interaction that was interfered with.
For the SDD protocol, the interference was off the critical timing path of the application

and in the critical path for the other two invalidate-based protocols.
For the 3DFFT application, the iterative nature of the application required approxi-

mately twice the number of shared writes for the fine-grain synchronization case as com-
pared to the coarse-grain case because the data must be set to an invalid code between
iterations. As shown in table 2, these extra writes created at least as many invalidations
as were eliminated by the fine-grain synchronization, and the resulting network traffic

remained almost constant for the same reason. The small number of consumers increased
the execution time of the distributed directory invalidate-based protocols (SDD and SCI)
slightly more than the centralized-directory protocol (CD-INV). Overall, the fine-grain

synchronization scheme did not improve the execution time for the 3DFFT application
when invalidate-based protocols were used.

As the number of consumers and the line utilization increased, the consumer and
producer interference also increased. For the LU application, fine-grain synchronization

.1
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increased the number of invalidations and network traffic, as illustrated in table 2. With
relatively inexpensive coarse-grain synchronization in this application, the increase in
invalidations and network traffic outweighed any performance gains from the elimination
of the coarse-grain synchronization operations. Again, fine-grain synchronization offered
no improvement in execution time for systems with invalidate-based protocols.

For the update-based protocols, fine-grain data synchronization always improved the
performance of the applications, as illustrated in figure 4a. The fine-grain synchronization
decreased both the number of updates and the network traffic for non-iterative applica-
tions (SPCF, MF and LU), as shown in table 2. For the iterative applications (PDE and
3DFFT), the extra writes to clear the data between iterations increased the number of
updates for both update-based protocols. The network traffic was reduced for the CI)-UP
protocol, but it increased slightly for the DD-UP protocol.

The fine-grain synchronization scheme had the largest impact on the DD-IP protocol
when the number of consumers was greater than one (SPCF, 3DFFT and LU). In these
applications, the coarse-grain synchronization scheme required the producer to wait for
the updates to be propagated down the list of caches and then acknowledged. This limited
the performance of the DD-UP protocol; the fine-grain synchronization scheme removed
the need for these acknowledgements.

Figure 4b shows the relative execution time of the applications using fine-grain syn-
chronization compared to the centralized directory invalidate-based protocol (CD-INV).
As shown in the figure, the update-based protocols always perform better than any of the
invalidate-based protocols when a fine-grain data synchronization scheme is used.

For the invalidate-based protocols using fine-grain data synchronization, the SDD
protocol performed better for the applications with a single consumer. In these cases,
the memory write backs of the CD-INV protocol were unnecessary since the data was
not read from memory again because cache-to-cache transfers were used to transfer the
data to the single consumer. But as the number of consumers increased, the invalidation
latency of the distributed directory protocols resulted in longer execution times compared
to the base CD-INV protocol.

For the update-based protocols, the performance of the two protocols was almost
identical except for the SPCF application. The improvement in performance compared to
the base CD-INV protocol was best for applications with high line utilization and a large
number of consumers (LU). As the number of consumers decreased, the improvement from
the update-based protocols also decreased compared to the CD-INV protocol. Compared
to the SDD protocol, the improvement was less for applications with a single consumer,
but it was more for applications with multiple consumers.

6 Conclusions

In summary, the fine-grain data synchronization scheme, when used with invalidate-based
cache coherent systems, did not offer a robust solution. It only improved the performance
for applications with a small number of consumers (less than 2) and a low line utilization.
These application characteristics tended to avoid consumer interference. On the other
hand, systems with update-based protocols could take advantage of the fine-grain syn-
chronization scheme. The resulting execution times were always less than the coarse-grain
synchronization case, and they were always less than the corresponding execution times
for the invalidate-based systems using fine-grain synchronization.

The performance of fine-grain synchronization was unstable when invalidate-based
cache coherence protocols were used because the definition of the invalidate-based pro-
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tocols prevented the producer and consum.-rs from actively sharing a memory line. The
producer was required to obtain exclusive ownership of the line before writes could be
performed. Consumers who might be consuming data from the line were forced to give
up their copy of the line. The simulated results of the fine-grain scientific applications
demonstrate the performance loss that can occur as the producer and consumers interfere
with each other.

The definition of update-based protocols offered a much better match to the fine-grain
data synchronization. The protocols allow multiple producers and consumers to maintain
copies of a given memory line at the same time; the producer and consumers of data can
not interfere with each other. Overall, our earlier work and this work have demonstrated
the performance gains that can be achieved with update-based cache coherence protocols.
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Abstract: We describe an experimental computing system based on an active memory
architecture and its programming environment. The key idea is to directly embed within each
memory unit some processing logic that can be programmed, at run time, to perform user defined
operations on the data stored within the memory unit. Such an active memory architecture
provides a natural and efficient framework for object oriented programs by directly supporting
objects in memory and providing the underlying hardware base for a high performance storage
server. Additionally, its unique memory-based approach to performing 1/0 enables application
programs to have direct access to high speed network or disk data, with no involvement of the
operating system kernel.
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Keywords:Memory Architecture, Parallel Processing, Compilers, Object Oriented Programming

1. INTRODUCTION

For the past few years our group's research efforts have been focussed on memory
participative computer architectures, in which the traditional "passive" role of the memory is
superseded with memory as an active agent that cooperates with the main CPUs to complete a
computation. To develop a deeper understanding the design and use of such systems, we have a
built a prototype intelligent memory system at Bell Labs called SWIM (Structured Wafer-based
Intelligent Memory.)

In this paper we briefly describe the architecture of the system and share our experiences in
developing programming tools and applications for it. We present a snapshot of an on-going
research project, reporting on what we have done so far, our current status, and plans for
addressing outstanding issues/areas.

The demands of the target applications - primarily from telecommunications and databases -
has considerably influenced our thought process. We believe that the existing processor-centric
designs are not ideally suited for database and communications applications that by their nature
tend to be memory intensive. For example, in communications processing, typically, data from a
communication link gets deposited in memory through the system bus with the help of an 1/0
channel processor or a DMA unit. The processing of this data involves simple operations such as
checksum computation, bit extraction, insertion, header parsing, link list manipulation, table
look up, keyword searches and the like. Generally, no massively CPU intensive floating point
vector operations are involved. Quite often (such as in routing or switching) the received data
after some processing is put on an output queue for transmission back on the communication
link. The situation in network query processing is similar. The data stream is divided into units
(messages or packet) whose processing is repetitive, pipelined and localized. These properties
are not well exploited in processor centric design of existing computer systems.

On the other hand, memory is a vastly underutilized resource in computer systems.
Moreover, in its traditional form, it is not capable of scaling along with the CPU (the system bus
just gets more congested). Large latencies in accessing data from the main memory to the CPU
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cause serious inefficiencies in many applications. Lack of fast context switching also limits the
performance of real-time applications. In addition, locking operations for shared data structures
with "passive" memories is another drain on the system bus.

2. SWIM ACTIVE MEMORY
We have developed an architectural solution based on active memories to address these issues

[3]. The key idea is to take a small part of the processing logic of the CPU and move it directly
inside every memory unit. Additionally, that processing logic can be programmed, at run time, to
perform user defined operations on the data stored within a memory unit. By doing so, the
memory is no longer just a passive repository of data, but can actively participate in completing
a computation along with the host CPU.

Conceptually, SWIM appears as a
high bandwidth, multiported memory
system capable of storing, CPUco,, nk
maintaining, and manipulating data
structures within it, independent of the CACHE .

main processing units. The memory
system is composed of up to
thousands of small memory units, CPU
called Active Storage Elements
(ASEs), embedded in a CACHE AS
communication network. Figure 1
shows a conceptual picture of SWIM. memory and processing logic pair
Each ASE has on-line micro-
programmable processing logic
associated with it that allows it to Figure 1. Conceptual Model
perform select data manipulation
operations locally. The processing logic is specially designed to efficiently per~brm operations
such as pointer dereferencing, memory indirection, searching and bounds checking. This makes
SWIM well suited to performing operations such as record searches, index table lookup,
checksum computation and exception processing in active databases.

The memory system can be partitioned
to support small and large objects of II
different types, some that fit within a IIrow but
single ASE, others that span several ASEs
as shown in Figure 1. In the latter case,
ASEs cooperate with each other to switch
implement user defined distributed data 4 -C ol.

structures and methods. ASEs can also
connect directly via back-end ports to SAM
disks and communication lines.

Physically, the ASE represents a close
coupling between the memory cells and ,, 32 bit s
specialized processing logic in the same nit ALU
local domain, thereby creating the
potential for performance benefits. Figure
2 shows a block diagram of an ASE. The Mi,,,pg ,,abir,, togi 100,

major components are the data memory
itself, a 32 bit ALU with on-line Figure 2. SWIM Active Storage Element
microprogrammable control unit, and a
two-ported switching and bus interface unit. The row and column bus interfaces allow ASEs to

I
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be connected in a two dimensional array. The switching logic supports the routing and buffering
of messages between ASEs.

3. SWIM ARRAY

ASEs can be configured in various topologies to construct a parallel memory subsystem. Our
experimental system has a 2-D array structure as shown in Figure 3 and consists of a 4x4 array
of ASEs on a single VME card with SUN/SPARC as its host platform. Since the entire bus
interfacing and switching logic is built within the ASE, no additional "glue" circuitry is
required to construct a SWIM array. The ASE array interfaces to the host system bus through
circuitry known as the CLAM (Control Logic for Access to Memory).

The Swim array appears as ordinary memory
to the host processor but provides back-end -------------------- I
interfaces to communication lines and to disk ,ip,.Voa
subsystems. Such a back-end connection into I
memory elements has several benefits. First, MEMORY it

Messages from the communication lines can be .
received and processed entirely within this active
memory system or be moved directly to the disk - - -
subsystem. Additionally, queries for data on the -
disks can be processed rapidly and replies
forwarded to the network directly with virtually no
involvement of the host processor. Second, since I
the ASEs handle all the low level data transfers
and processing (such as filtering, format -
conversions, compression, decompression etc)
much of the traffic is contained within the memory
system. Third, the CPU(s) are relieved of much of -7

the interrupt handling and context switching
overhead associated with 1/0 transfers. Fourth, the
architecture is scalable in that 1/0 bandwidth can
grow with the size of the array. The memory size 1
and processing capacity grows correspondingly L... m - ..
with it. Last, multiple parallel I/O paths can be
used to enhance either performance or fault Figure 3. SWIM 4x4 Array
tolerance or both.

Other reasons to favor this model are technological. Memories themselves are getting denser
but no more functional. A 64 Mbit chip is capable only of storing and retrieving a single word at
a time. Adding 80,000-100,000 transistors of processing logic to that chip amounts to less that
0.1% of the chip's area, yet the functionality of the chip is now vastly increased. Secondly,
because more computation is done on-chip and pad boundaries have to be crossed less often, a
saving in power consumption results.

4. PROGRAMMING MODEL

An active memory provides a natural and efficient framework for object oriented
programming by directly supporting objects in memory. This is significant because much of the
investment for large networks is in software. If we consider an object-oriented programming
paradigm, different memory processors can be programmed with the methods (member
functions) to manage the objects for which they are responsible. Much of the computation can
now be off-loaded onto the memory system. Memory functionality is increased to better balance
the time spent in moving data with that involved in actually manipulating it. The host processor
now has only the job of dispatching tasks to the memory processors (or object managers).
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Performance gains are realized in several ways. First, the memory processor is tightly coupled
with the memory. There is no slow system bus, and access is at cache speeds. Secondly, the
instruction set can be optimized for "memory intensive" operations. Finally, concurrency is
possible between memory processors, and between the host processor and a memory processor.
Unless one processor needs the results or data of another, there is no reason why they cannot
execute their programs asynchronously.

In an object-oriented framework, We
can logically view a SWIM ASE as a
microprogrammed implementation of a
class. An object physically consists of a
data structure and some member functions,
shared by all objects of that class. The
member functions are resident in the
microcode of the ASE and the data resides
in the ASE's data space as shown in Figure
4. An ASE provides the complete logical
encapsulation of the object it manages. An
object could be a data structure such as a
priority queue or a graph, or an 1/0 object
such as a disk or a communication link.
External application level agents accessing
the objects need not know about its
internal implementation. Only the ASE
concerned need have knowledge about the ...
structure and semantics of the object, be it
a queue, a communication link or a disk
block server. Figure 4. Cooperating Objects Model

Multi-ASE-Data Structures: Simple and small objects can be stored and manipulated entirely
within an ASE, while larger and more complex objects are stored within several ASEs, and are
cooperatively managed. Presently, the task of partitioning a large data structure and the
assignment of ASEs to object data and code segments is up to the programmer. However, the
architecture provides built-in support at the hardware level for low latency communication
between ASEs (two cycles for sending a packet between ASEs), direct invocation (scheduling)
of code sequences with the arrival of an ASE transaction, programmable traps, and a fast reply
mechanism. Efficient fine grain parallelism can be achieved using these mechanisms.

5. BUILT-IN SUPPORT MECHANISMS FOR OBJECT MODEL

A unique feature of SWIM is its memory mapped architecture. The individual data memories
within each ASE are directly mapped into the host CPU's address space and can be
asynchronously read and written by it any time, as indicated by the thin arrows from application
C to the ASE in Figure 5. This makes setting up of data structures, downloading object code,
and communication between the host and ASE extremely easy. Since the entire state of the
program running in SWIM is directly observable and controllable by the host, it also simplifies
the debugging and monitoring of multi-ASE programs. We have developed a graphical parallel
debugger for SWIM to ease the task of inspecting and debugging application programs. Packet
transfers and reads and writes of an ASE's data address space become simple memory reads and
writes.

Communication Modes: The architecture supports two modes of inter-ASE communication.
The first is a three word packet form, for short asynchronous inter-ASE transactions. The notion
of a message consisting of multiple packets is also supported by the hardware. The second form
of communication is synchronous bulk data transfers between ASEs. Since ASEs typically
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communicate with each other using small messages, we designed a two level bus structure for
the interconnect. Such a structure provides the smallest average latency of communication
between ASEs for moderate size arrays, is simple to implement, and makes it easier to
incorporate message broadcasting.

An ASE is configured with the member
functions for a particular object class [6] by
loading its on-chip microcode memory with L
the appropriate microcode to execute member APO C

functions associated with that class. In the
SWIM system, this microcode can be down-
loaded at run-time. Conceptually, the data
memory of the ASE is divided into multiple
object buffers. Each object buffer is a chunk
of memory large enough to hold all the data
for an instance of the particular class. The
memory system can be partitioned to support
small and large objects of different types,
some that fit within a single ASE, others that
span several ASEs. In the latter case, ASEs
cooperate with each other to implement user
defined distributed data structures and
methods.

A member function is invoked on a Figure 5. SWIM and Host Processor Interactions
specific object by sending a message to the
ASE managing it. Shown, for example, by the bold arrow from application C to the rightmost
ASE. This message must identify the particular object of interest, the specific function to be
executed, and the values for any parameters that may be required. Any response from the ASE is
also in the form of a message. The SWIM system provides a very efficient mechanism (in the
order of a few micro-instructions) to effect the transfer of short messages of this kind. The ASEs
communicate with each other using this mechanism. Under the supervision of a host program, an
ASE can independently read/write data from/to host's regular memory, process it on-the-fly, and
move it to a specified I/O device. The dotted lines in Figure 5 show an example of such a transfer
in which the middle ASE serves as a "smart" DMA agent to move data between host's regular
memory and a communication line.

The processing between the receipt of a function invocation by an ASE, and the subsequent
provision of the corresponding response back to the invoking entity is called a transaction. In
the course of the execution of a transaction, multiple additional functions may be invoked. The
entire computation has associated with it a system-generated transaction identifier, and the
invoking entity can look for the associated results using this identifier. For interfacing with the
host, the hardware provides multiple logical buffers at the output of SWIM, each associated with
a different transaction identifier.

The function invocation mechanism is asynchronous in that there is no need for the invoking
entity to wait while code for the invoked function is being executed. Thus, the overhead of
member function invocation on an ASE is a few memory operations as far as a source ASE is
concerned, and a few micro-instruction cycles as far as the target ASE is concerned. This
overhead may cancel any benefits arising from executing code in SWIM rather than in the host
for very trivial member functions. But, for any substantial member function, and especially if it
is likely that a significant portion of the data is not cached, executing the member function on
SWIM will be a win. However, note that individual memory read/writes by the host are
synchronous - but these are usually quick enough so that the waiting time is not large.
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Branches and programmable traps: Branches in an ASE are free; a conditional or
unconditional branch consumes no additional cycles and may be incorporated into a
microinstruction which performs other useful work. The traps in SWIM are programmable. In
traditional processors, one operation that often consumes CPU cycles is checking for special
conditions. Loops can often be coded tightly except for memory bounds checking. Counters are
cheap to implement except that code has to check for a maximum or minimum value. When
matching patterns, a tight loop is possible except that the pattern string may contain special
characters or the data stream may contain special matches. All these conditions are handled in
SWIM through an efficient trap mechanism. Traps may be set for memory bounds, maximum
increment value, decrement reaching zero, and so on. When a trap condition occurs, program
control is transferred to a user-specified address containing the trap handler. This mechanism,
along with a long instruction word architecture, permits the coding of very tight loops (e.g.
pattern matching can be performed in a single microinstruction).

6. C LANGUAGE SUPPORT FOR SWIM

While the SWIM ASEs may be programmed in m'crocode assembler, they are more
conveniently programmed using the C programming language. The SWIM C compiler which
generates microcode directly. At a higher level, classes in a C++ program can be targeted to
reside on an ASE through pragma statements. The entire C++ program is then run through a
compile system which splits code into host-resident and SWIM-resident sections. Method
invocations are replaced with references to SWIM's memory. The SWIM resident portions are
then compiled by the SWIM compiler and the host-resident portions are compiled by the
standard C++ compiler on that host. If necessary, time-critical code segments can be specified
using in-line assembly statements. Traditionally, microcoded architectures have been
programmed
through hand- host-resident

microcoding. generate functions compiler nttei-,
However, as parallel C++ - °cross-system
architectures will be prga calsan

arhiecurs il b pogam split code SWIM resident SWIM C++ SWIM mia,-,, le
increasingly used by functions compiler
programmers not
intimately familiar *c...v.stem calls are... han.- by which the
with the details of -.tone, with SWIM (and SWIMwith he d tailcof municates with the ho.tt.

the
microarchitecture f'igure 6. C++ Compilation on SWIM
and software support
and maintenance becomes more important, the ability to program the machine in a higher
language becomes more desirable.

The C programming language [5] was chosen as the input language for SWIM. It offers
several advantages. For programming data-intensive operations, C allows the direct description
of bit manipulations and low-level operations. It is a good language for program generation. C is
already known and used by a large community of users. Because C is the dominant language on
the host systems to which SWIM is currently interfaced, a C compiler on SWIM would be an
ideal complement. Finally, programs written for an ASE may be tested on other C compilers on
other machines.

A high level language may be supported on a microprogrammable machine in several ways.
The first is to run an interpreter for the language in microcode. The second is to run an
interpreter for an intermediate language in microcode. The compiler will translate the high level
language into this intermediate language. The third, and last, is to compile the high level
language directly into microcode. Banerji and Raymond [7] advocate the second method,
arguing that microcode store is often too small and the translation may be easier if a good
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intermediate language is chosen. We opted for the third method instead, compiling directly into
microcode to maximize flexibility and performance.

Most retargettable C compilers (e.g. pcc, UNIX's portable C compiler [1 and gcc from the
Free Software Foundation) are inadequate for generating code for a SWIM ASE. Their model of
the architecture, registers, and instruction space is too rigid to be retrofitted into a compiler for
SWIM. In particular, they assume a von Neumann architecture with shared program and data
memory, a single stack, and a single program counter. SWIM's microcode forces the compiler
to deal with memory access through only a few memory address registers and a simulated stack.
This is a great burden on automatic code generation. Common practices, such as allocating three
memory address registers to serve as a frame pointer, argument pointer, and stack pointer are
prohibitively expensive. The Icc compiler [41 has been chosen as a front end for a SWIM C
compiler. It provides a convenient coupling between the front and back ends. It conforms to
ANSI C and is fast and compact. The front end is responsible for parsing the language and
produces a forest of directed acyclic graphs (dags) representing each compiled function. The
back end selects code and annotates these dags and passes them back to the front end which then
calls the back end to emit the code.

The goals of the compiler are to generate good, accurate, and compact code. The microstore
on an ASE is not large, so the generated code is optimized and the microinstructions well-packed
while ensuring that the behavior does not deviate from the programmer's intent. Moreover,
facilities are provided to allow the knowledgeable programmer the ability to better control code
generation. These controls include the generation of function prologues and epilogues, the
mapping of variables to registers, and adding in-line assembly code. The pragma mechanism in
C enables the support of these directives.

There are three steps in generating code for a SWIM ASE. The first is generating the dags in
the front end and performing global optimization on the dags such as common subexpression
elimination. The second takes place at register allocation time and involves allocating registers
and annotating and/or restructuring dags to better fit SWIM's instruction set. The third stage
takes place during code emission and consists of generating instructions, rewriting them, and
packing a microword. In some cases instructions may be rewritten to better fill the microword.
For instance, a register move may be rewritten to an equivalent alu operation if the alu fields are
not in use, enabling another register move to take place in the same microinstruction cycle.

A set of functions and macros are available on the host end to facilitate interfacing with
SWIM ASEs. Some of these facilities are functions to map SWIM's memory onto the processes
memory space, claim a lock on SWIM, dereference ASE memory and register space to physical
memory, and send and receive packets.

7. APPLICATION EXAMPLES

A number of applications have been written to explore the capabilities of SWIM and to obtain
a measure of the potential performance gains. Results from a national phone database server,
implemented on the existing SWIM system, indicate that it could handle in excess of 75 Million
queries per day for retrieving a name/address given a phone number. We have also applied
SWIM for prototyping a call screening application. The call screening agent receives copies of
signaling messages and determines whether they should be processed by a service processor
instead of being given normal treatment. In order to do this, it performs a database lookup on
calling number and/or called number in real-time, and identifies the service processor where the
features for the call are enabled. We showed that a query processing rate of 10,000 - 12,000
queries/second with nominal latency of 344 microseconds, is achievable in our lab prototype.
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Gigabit IP Router

An IP packet router that can keep up with gigabit per second packet rates has been implemented
on SWIM. Our approach is not to build a communications processor to support a special
protocol set but, instead, to identify generic, commonly occurring communications processing
functions and provide an implementation that efficiently supports these underlying functions in
SWIM [2]. The motivation is similar to that in the use of DSP chips for signal processing
applications in preference to regular general purpose microprocessors. Many of the
communications processing functions are data-intensive, and most data-intensive processing is
best done where the data is, in the memory system itself, independent of the main processing
unit.

The three primary operations performed in a router are: 1) reception and transmission of the
data frames from and to the link, 2) for an incoming packet deciding the outgoing link on which
it should be transmitted, and, 3) switching the packet from the input link to the output link.
Consistent with this functional division, the architecture shown in Figure 7 separates the data
movement function from the actual function of routing based on the IP header. The latter
function is performed by a SWIM/ASE based module, while the interface modules support
various link protocols. The system can contain different types of link modules and multiple
copies of a given type of link module.

The Interface Modules transmit and receive data from the links at the required bit rates. The
data received from a link is saved in an input buffer. As a packet comes in, the IP header is
stripped by the control circuitry, augmented with an identifying tag, and sent to an ASE for
validation and routing. While the ASE is performing the routing function, the remainder of the
packet is deposited in an input buffer in parallel. The ASE determines which outgoing link the
packet should be transmitted on, and sends the updated header fields to the appropriate
destination interface module a!ong with the tag information. The packet is then moved from the
buffer in the source interface module to a buffer in the destination interface module and
eventually transmitted on the outgoing link.

ASEs can each work on different headers in
parallel. The circuitry in the interface modules ASE ,
peels the header off of each packet and assigns the
header to ASEs in a round-robin fashion. Each "E2

ASE performs processing as discussed below. In
some applications, order-maintenance is an issue. t, m-, l

The output control circuitry also goes round-robin, ASE.

guaranteeing that packets will then be sent out inAE
the same order as they were received. (Better h

load-balancing may be achieved by having a more I d.. af,,

intelligent input interface which assigns each " I

header tc the lightest loaded ASE. The output 1 I I a
control circuitry would then have to select the next I
ASE to obtain a processed headers from by W : in,

following the demultiplexing order followed at the -

input, so that order preservation of packet, is togmm litnk oftn link

ensured).
Figure 7. Organization of a SWIM based IP router

The performance results for processing an IP packet header varied depending on the type of
packet. On a single 20 MHz ASE system, with 512 network addresses, a packet can be routed at
a rate of 400,000 packets/sec . With host specific addresses and 2 fragments per packet, the
speed falls to around 200,000 packets/sec.
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Multiple ASEs can be used to obtain even higher throughput. Two header-processing ASEs
provided a speed-up of 1.8-1.9 times that of a single ASE (the actual performance varied a little
depending on the packet mix, and on other load on the system). With four ASEs, the speed-up
obtained is 3.3-3.5. The less than linear speed-up shown is largely on account of the
synchronization cost since we used a simple round-robin distribution mechanism, with
essentially no buffering to even out the loads.

8. EXTENSIONS

We have discussed the suitability of an ASE managing a single class of objects. The scope of
objects is great, in that they may vary greatly both in size and in quantity. Essentially, any size
object can be supported by SWIM. If an object is so big that it cannot fit into the address space
of a single ASE, one of two actions can be taken. Either parts of the object can be swapped onto
a disk attached to the ASE or several ASEs can cooperatively manage different parts of the
object. The choice is up to the programmer and depends on the size of the object, frequency of
reference, and performance required.

A large number of objects can use up all available memory on an ASE. When this is a
concern, a disk may be used as a store for swapping objects. This may be a local disk or another
ASE with an attached disk devoted to object management. The advantage of a local disk is
performance. The disadvantage is that code for managing a disk-based object store has to co-
reside with the methods for the class that the ASE manages. On the other hand, a separate ASE
acting as an object store can devote all of its resources to stonn, and caching objects. An ASE
would send an object identifier to the object store and receive the object as a message. This
latter approach is far more practical for all but extremely large objects where packet transmission
times become significant.

Finally, in certain environments, persistent objects are needed. These are objects that live
beyond the lifetime of a single process. An object store on SWIM can support such objects,
using an ASEs memory for cache and the disk as a store. Note that while a process' address
space disappears when the process dies, SWIM's ASEs and associated memory still remain
active. Hence, even if an object is not placed in secondary storage, it still remains durable and
persistence is achieved (without resorting to a file system).

9. CURRENT STATUS

A complete parallel hardware and software
system constructed using an array of SWIM chips
is operational. A photograph of the prototype
SWIM board plugged into the VME bus on a Sun
workstation is shown in Figure 8.

The chip, fabricated in 1.25 micron CMOS,
has 80K transistors for logic and 4 Kbytes of
downloadable microcode memory. We have not
yet integrated the data memory into our
experimental ASE, so the 512 Kbytes of data
memory per ASE is currently external to the ASE
chip. Figure 8. SWIM Prototype Board

In order to use SWIM effectively, a suite of software tools to aid development and debugging
has been written. This includes a microcode assembler, disassembler, compiler, graphical
debugger, libraries, and over 50 user commands for manipulating various aspects of the SWIM
system.
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10. CONCLUSION

The results from the ap, ations we have studied so far have been encouraging. We are
exploring other applications t, .emory based !/O subsystems particularly in the area of wireless
networks.

The performance gains realized by an active memory based system are due to three factors:
I) Data can manipulated in an ASE locally by the on-chip processor at a speed limited only by
on-chip clock rate, and not by off-chip memory access times. 2) The ASE processing logic is
designed to perform a generic class of data structure operations very well, resulting in several
fold architectural performance advantage over a general purpose processor. 3) Both fine grain
and medium grain parallelism in an application can be exploited using SWIM. FiiJally, the
SWIM architecture scales with regard to processing power, memory size, memory bandwidth
and I/O bandwidth.

Flexibility of design and on-line reconfigurability are additional advantages of our approach.
This is significant because much of the investment for large networks is in provisioning, access
and management of databases.

The SWIM C compiler has been used extensively. It produces good compact code within
the realm of the ASE's architecture with which it is familiar. Through in-line assembly code,
additional features of SWIM may be accessed. With pragmas, the programmer has more control
over generated code. Interfacing between SWIM and host programr .s made easy with include
files produced by the compiler which define static variables for the host

SWIM's architecture, however, is far richer than that which can be easily compiled into a
language such as C. In particular, the traps mechanism enables address or value bounds to be set
and checked for automatically. When a condition is met, a trap takes place. These can be hand
coded into SWIM C programs through a combination of in-line assembly code and register
assignments. Ultimatel,, it would be desirable to have the compiler automatically detect
conditions where using traps would prove useful. Similarly, SWIM's pattern matching hardware
is unused by the compiler. Using it would involve putting a number of general purpose registers
to special use and deducing segments of code that can be optimized by using this hardware.
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Abstract: We use a general model to represent interprocessor collective communication
in languages such as High Performance Fortran. Our model includes a communication
pattern matrix and a shift vector. Most current research uses a simple distance vector
[3, 7]; a distance vector corresponds to our shift vector when the communication pattern
matrix is the identity matrix. We show how to find and operate on the communication
pattern matrix from user-aligned array references. We also discuss the differences between
physical and virtual communication. We have implemented some of our analysis methods
in Tiny [11].
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1 Introduction

Multicomputers are an important parallel architecture because they are scalable and rela-
tively inexpensive to build. However, multicomputer MIMD or SPMD programs are hard
to develop and extremely difficult to debug. Several higher level languages have been
proposed to help multicomputer programmers; SISAL, Crystal, Kali, Superb and Fortran
D are some examples. Most, if not all, use an SPMD programming model that utilizes
data parallelism, as described in [2, 6]. In these higher level languages, interprocessor
communications are generated by the compiler [13].

In multicomputers such as the Intel iPSC/860 and nCUBE, the overhead time as-
sociated with sending a message is relatively high. Reducing the total communication
overhead is an important optimization. One approach is to minimizing the number of
communications by using "vectorization," that is, transmitting whole blocks of data rather
than single elements. Current systems such as Fortran D [3] and Superb [7] use distance
vector information, similar to dependence distances [1], to classify communication pat-
terns. These patterns are used to vectorize communications. We believe that distance
vectors are too restrictive for communication analysis.

In this paper, we propose a systematic approach to analyze interprocessor communi-
cation for multicomputers, assuming data decomposition is described by the user. We use
a programming model similar to that of High Performance Fortran (HPF). We first apply
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foral( ii - LBi:UBI, i2 - LB 2 :UB2 . .... i, - LBn:UB,)

Figure 1: Language Model

usage analysis to find a communication matrix and a shift vector for every right hand
side array reference in an array assignment. Communication patterns are classified for
each array reference according to the pattern matrix. The analysis is used to find com-
munication in the virtual space. The model proposed for this analysis has some severe
restrictions, which we relax in the final section.

2 The Program Model and Definitions

The program model we are using is similar to the one used for data dependence analy-
sis. We focus on parallel assignments, such as Fortran 90 array assignments or f orall
statements, as shown in Figure 1. For this paper, our examples have three restrictions:

1. The dimensionality of each array is equal to the number of parallel indices;

2. The subscript expressions in the left hand side array are a simple permutation of
the parallel indices. This is easily satisfied by appropriate restructuring, as shown
by Li and Pingali [41; and

3. The right hand side subscript expressions G(i) are linear combinations of the parallel
indices, which is also typical of data dependence analysis methods.

We discuss these restrictions further in the last section.

2.1 Data, Iteration and Processor Space

In a multicomputer application, the programmer and/or compiler must considei Lhree
different indexed spaces, i.e., the data space, the iteration space, virtual process space
and the actual processor space. We define these as follows:

" Data Space: Each array defines a data space, where each point corresponds to an
element of the array.

" Iteration Space: The iteration space of a d-nested loop or forall is a d-dimensional
Cartesian space, where each point corresponds to an iteration of the loop or forall
body.

" Virtual Space: A virtual space is an abstract indexed space that roughly corresponds
to teuplates in HPF. Data alignment is used to describe how points of a data space
are aligned to points of a virtual space, as described in Li and Chen's work [5, 12]
or in High Performance Fortran. When two points from different data spaces are
aligned to the same point in a virtual space, they will always be allocated to the
same physical processor, regardless of the distribution used.
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Two points from the same data space will always be aligned to different points in
virtual space. In this paper we assume a single virtual space, to which all data
spaces are aligned. We define the active area of a virtual space as follows: a parallel
assignment updates a subset of the data space of its left hand side; the points in
virtual space to which that subset is aligned is called the active area.

9 Physical Space: A physical space is an indexed space such that each point cor-
responds to a physical processor. Each processor has its own ID number. The
topology of the interconnection network is not considered here, thus our analysis is
architecture independent. The virtual space is distributed over the physical space,
which implies distribution of the data spaces; when two points in virtual space are
assigned to the same point in physical space, they are allocated to the same phys-
ical processor. Again we assume a single physical space, which may have fewer
dimensions than the virtual space.

Data alignment and distribution define how the data spaces are distributed over the
physical space. The goal is to allow users to write programs in a data distribution in-
dependent manner. The distribution can then be tuned without changing the program.
When the distribution is known, the compiler can generate appropriate communications
for each array reference in a parallel assignment.

2.2 Data Decomposition
Here we study only block decompositions of dimensions of the virtual space onto the
physical space. Cyclic data decompositions [3] have not yet been considered. Possible
data decompositions for a two dimensional virtual space are:

"* Decomposed by row: X(block,:).

e Decomposed by column: X(: ,block).

"* Decomposed by subblock: X(block,block)

Decompositions for higher dimensional spaces can be described similarly. We have
also studied diagonal decompositions, where X(ij) and X(k,1) are allocated to the
same physical processor if i+jk+l, but these are not reported here.

3 Usage Analysis
For each right hand side use of an array that fits our model, we find a communication
pattern matrix M and a shift vector s to represent the usage pattern. The matrix M and
the shift vector s are simply obtained by representing the right hand side array subscript
expressions as a function of the left hand side subscripts. Analyzing the matrix and shift
vector tells us a great deal about the necessary communication. Our representation has
advantages over other work, which concentrates on communication distance vectors, as
we will demonstrate. In the following, upper case italics refers to matrices, and lower case
italic names are column vectors.
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foraliC i = 1:n, j=2:n)110\ /0\
a(i,j) - a(i,j-1) M= 0 1 -1

Figure 2: Identity communication pattern matrix.

&(ioj) - a(i,i) M= 1 0 0

Figure 3: Singular (multicast) communication pattern matrix.

3.1 Mappings
The iteration space is indexed by the vector of loop indices, i. When we restrict the left
hand side reference subscript expressions to be a permutation of the index vector, the LHS
reference can be expressed as X(Pi), for some permutation matrix P. Each right hand
side array reference can be represented by expressing the subscript functions in matrix
notation, as Y(Gi + g). We call G the data access matrix and g the access offset vector,
extending Li and Pingali's work [4]. This gives us a mapping from each point in the
iteration space to the corresponding points in the data space.

We also assume that the arrays are all aligned to a single virtual space by a simple
affine mapping. Initially we study only axis alignment and offset alignment (i.e., no
scaling). The mapping from a point d in a data space to the corresponding point v in
virtual space is given by an axis alignment matrix A and an alignment offset vector a.
Thus, v = Ad + a; for now we restrict ourselves to the case where A is nonsingular and
unimodular (integer entries, determinant = ±1).

In the virtual space, communication must occur from the RHS array to the LHS. The
LHS array reference is at virtual point w = Ax(Pi) + ax, and the RHS array reference is
at virtual point v = Ay(Gi + g) + ay. Solving for i in terms of w gives us

i = P-Ax 1 (w - ax)

Inserting this into the source equation, we get commmunication to point w from point

v = Ay(G(P-'Ax1(w - ax)) +g) + ay

Algebraic manipulation can give us communication to point w from point v = Mxyw +
sxy, where

Mxy = AyGP-'Ax'

sxy = Ay(G(-P-1 Aj lax) +g) + ay

Note that even in the simple case of communication with the same array or arrays that
are identically aligned, the alignment matrices do not drop out of the expression.

3.2 Examples

To demonstrate the basic idea, we give some examples. In Figure 2, the communication
pattern matrix is the identity matrix, since the LHS and RHS arrays are the same (and



105

template t(:,:)
align Cai.j),t~i~j))( ' o
align Cb(j,i),t(i,j)) 0 1 0 0
forall( i = 1:n, j = 1:n ) k 1

a(ij) = b(i~j)

Figure 4: Transpose communication pattern matrix, through alignment.

thus must be aligned), and the indices appear in the same order in the subscripts. Figure 3
shows a singular communication pattern matrix; this is a situation where each point in
virtual space must send a value to many receivers. Because of the restrictions of our
model, this is called a linear commmunication, since the virtual point of the source can
be computed as a linear combination of the virtual indices of the destination. Here, each
source has n destinations. In general, whenever the communication pattern matrix is
singular, we have a linear communication. Figure 4 shows the matrix computed after
taking into account the alignment of two arrays onto a common virtual space.

4 Virtual Communication

The virtual communication is communication between source and destination points in
the virtual space. The communication pattern matrix and shift vector can be used to
determine the source point in virtual space from the destination. For any point w in the
active area, w will receive data from virtual point v = Mw + s.

4.1 Basic Idea

Here we describe a simple process to find the destination point or points from each possible
virtual source. This uses a great deal of the linear algebra that is also used in analysis
of subscript expressions for data dependence analysis, as in Banerjee's monograph [91.
Given the matrix and vector M and s as in the previous section, we wish to decide for
each virtual point (1) whether that point is a source for this communication, and (2)
what are the virtual destination points. Moreover, most of this work should be done at
compile time, so that at run time the decisions can be made as efficiently as possible. We
do this by finding a unimodular matrix U and a lower triangular integer matrix L such
that MU = L. We can then solve Lt = v - s, where v is the index of the potential source
point. Since L is lower triangular, a simple back substitution will suffice. This solves
for t in terms of v; in case of linear communication, one or more of the t indices will be
left unspecified (a free variable). If there is no integer solution, then this virtual point is
not a source. If there is a solution, then Lt = v - s can be rewritten as MUt = v - s
or Mw = v - s where w = Ut. Thus the matrix product Ut gives the destinations in
terms of t, where some or all of the i entries are replaced by their equivalents in terms
of v. The proofs of this are in [9]. During the first reduction process (finding U and L),
redundant rows of M will be eliminated, which will add constraints to the indices of the
source points. For instance, if we find that row 2 of M is twice row 1, then we eliminate
row 2 of M, and add the constraint that v2 = 2vj. The second element of v is then
completely determined, and does not participate in the rest of the matrix solution.
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forall( i = 1:n, j = 1:n ~ M=(~' -(-

a(ij) = a(i+j-1,2*i+2*j-3) M 2 2 -3S

Figure 5: Linear communication pattern matrix.

In the rest of this section, we show how to find communication pattern using M.

4.2 Nonsingular Communication

In the example from Figure 4, we have

1 0 ,= 0

We can use any method to find appropriate L and U matrices; efficient methods are
described in [9, 8]. The simplest solution here is

L= 0 1 1 0

The reader can trivially confirm that MU = L. At any virtual point v = we can
V•2)

solve the matrix equation LR = v - s with i1 = v1 , t2 = v2. The destination point w is
computed as

1 0 V2 ) V(1

This is an example of a nonsingular communication matrix with no redundant rows
or columns and no free entries of t. We found other nonsingular communication patterns
such as rotation, but thsese are not reported here.

4.3 Singular/Linear Communication

Consider the example in Figure 5. The methods used for the Power Test for data depen-
dence [8] to find the L and U matrices will also determine that the second row of M is
redundant. In the matrix equation Mw = v - s, the second row is eliminated by adding
the constraint VZ - 82 = 2(vi - si), or in this example, v2 = 2v, - 1. We then find L and
U for the reduced system as L~ ( 1-0)

S0)v- 0 1
Again, the reader can confirm that MU = L. We solve Lt = 0 - .J, where 5 and .j are v
and s reduced by eliminating the elements corresponds to the redundant rows of M; in
this case L has one row and 0 and i have one element. The matrix equation solves to
tj = v, + 1; since t2 is not constrained by the solution, it is a free variable. From the
matrix formula Ut = w, we find the destinations as

W2 0 1 t2 t2
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Thus, a value of t = (t 1 ,t 2 ) describes a communication with source at (ti - 1,2t, - 3)
and a destination at (t, - t2, t2). Given a virtual point at (vj,v 2), it is a source point if
V2 = 2v, - 1; if so, it has destinations at all virtual points (vI - t 2 + 1, t2) for all values of
t2 such that the destinations lie within the active area. We can solve for the range of t 2

(or all free variables, in general) for which this virtual point has destinations by applying
the boundary region constraints of the active area to the destination point solution. If
the active area is (1 : 10,1 : 10), then virtual point (3,5) is a source, since 5 = 2 x 3 - 1,
and its destinations are those points (4 - t 2, t2 ) that lie in the active area. From the first
index we get the inequalities I < 4 - 12 _< 10 or -6 < t 2 < 3; from the second index we
get the inequalities 1 5 t 2 < 10. Combining these, we have the limits 1 < t 2 < 3, so the
destinations are (3,1), (2,2), (1,3).

5 Physical Communication
In the multicomputer system, many virtual points are clustered together on a single
physical node. In this paper, we only consider simple block decompositions.

When a dimension of the virtual space is distributed, communication across that
virtual dimension will cause physical communication. This can be easily tested by looking
at the formulas for source and destination virtual points. In the example in Figure 3, we
have a communication source at virtual point (vI, v2) when v2 = vi, and its destinations
are those points (wj,w 2) with w, = vi, and w2 is free. In these formulas, the first
index of source and destination is the same, while the second differs. If only the first
virtual dimension is distributed, this reference pattern will cause no communication in
the physical space.

In the example in Figure 5, the communication source is virtual point (vi, 2v, - 1)
with destinations at (v1 - t 2 + 1, t2 ) for all valid values of t2 . Communication will occur no
matter which dimension is distributed, since both indices of source and destination differ
for some values of t2 . When there is no free variable in the formula for wi, for some j,
and only that dimension is distributed, then there will be only one physical destination
for each virtual source point.

Three kinds of optimization can affect physical communication. When two or more
virtual destination points for the same virtual source point are assigned to the same phys-
ical processor, the message needs to be sent only once; we call this message collapsing.
The situation is recognized when there is a free variable (one of the t variables) in the
formula for destinations in the distributed index, and its coefficient is less than the dis-
tribution block size. In the example from Figure 5, if the first dimension is distributed
with a block size of 10, then each virtual source has up to ten virtual destinations in the
same physical processor (since the coefficient of t2 in the destination first index is one).

When two or more virtual source points are allocated to the one physical processor and
have virtual destinations on the same physical destination processor, the messages can
be collected and sent as a vector. Previous research has called this message vectorization
[101, and focused on ccnstant distance communication, when this is easy to recognize (the
communication pattern matrix is the identity matrix).

Finally, and most importantly, when the source and destination virtual points are
allocated to the physical processor, no message should be sent. We are working on the
criteria that characterize these last two conditions.
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6 Summary
We have described a method to classify references in data parallel languages that take into
account global indices and individually aligned arrays. The method allows the compiler
to generate code to compute the destinations for each data source. The classification is
more general than previous research, which focuses only on fixed distance communication.
It is related to Li and Chen's work [12], though that work attempts to automatically
generate an alignment from a declarative algorithmic specification. We have implemented
some of the compiler analysis in our research prototype, Tiny. We are now working on
experimenting with some of the linear communication patterns on an Intel iPSC/860
multicomputer.

In our work here we have several severe restrictions on the programming model. One
of the restrictions is that the left hand side array subscript expressions be a simple per-
mutation of the parallel index variables. This is not too severe; by the rules of forall
assignments (as proposed in Fortran 8x and used in High Performance Fortran) only one
value can be assigned to any array element. Thus if the subscripts can be represented
by the matrix formula Fi + f, the matrix F must be of rank n, where n is the number
of parallel indices. If F is square, it must be invertible; the compiler can then invert the
matrix and modify the index limits and right hand side references to satisfy this condition.
For instance, the assignment

forall( i a 1:N, j = 1:M )
A(ii+j-1) - B(i,j)

can be rewritten internally by the compiler as
forall( i 1 I:N, j - i:i+M-1 )

A(i~j) = B(i,j-i+1)
More general restructuring is shown by Li and Pingali [4]. We use a slightly more general
data access function than that paper, and generalize the programming model by allowing
different alignment functions and composing the alignment and access functions to access
the virtual space.

The restriction that the arrays have the same dimensionality as the number of parallel
indices can also be relaxed. Arrays with greater dimensionality must have redundant rows
in the access matrix. These are eliminated before (or during) processing, and added back
after solving the reduced system. Arrays with less dimensionality cause other problems.
On the left hand side, deficient arrays often correspond to manually linearized multidi-
mensional arrays. On the right hand side, deficient arrays are less of a problem; when a
vector is replicated across a virtual 2-dimensional space, the compiler has the freedom to
choose which replicated copy of the vector to use as a source. Non-replicated deficient
arrays will be allocated to a fixed subset of the virtual space, causing communication in
some virtual dimension. These issues have not been fully investigated.

The final restriction to subscript expressions that are linear combinations of the par-
allel indices is typical of such analysis work. Nonlinear subscripts, such as indexed sub-
scripts, must be handled dynamically or by some other means. We intend to focus on the
important case where compile time analysis can be effective.

Future work will look at analyzing parallel programs to see what types of communica-
tion pattern matrices actually appear. We will also look at whether this analysis can be
used to drive a program restructuring process, when the parallel assignment appears in
sequential loops. In this situation, depending on the distribution, loop interchanging or
other restructuring transformations may be able to optimize the communication pattern
and frequency. We also plan to use this formulation to evaluate the cost of the conimu-
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nication by inspecting the regularity of the communication pattern and estimating the
communication density, where the density is the maximum amount of data transferred
from any source or to any destination.
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By shifting much of the burden of machine-dependent optimization to the compiler, ti(,
programmer is able to write data-parallel programs that can be compiled and executed
with good performance on many different architectures. However. thlie choice of a good
data layout is still left to the programmer. Even the most sophistic(at-d compiler ma 'not
be able to compensate for a poorly chosen data layout since many compiler decisions aMe
driven by the data layout specified in the program.

The choice of a good data layout depends on many factors, including thle target ma-
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1 Introduction

The advent of languages like High Performance Fortran (HPF) [201, in which the pro-
grammer specifies parallelism implicitly by specifying the layout of an application's data
across the processor array, has focused renewed attention on the problem of choosing a
good data layout for parallel execution. Many experts believe that the choice of data lay-
out is one of the two most important steps, in addition to choice of a suitable algorithm,
toward a successful parallel implementation.

However, many programmers are not sure what data layout to choose. Many complex
considerations must be taken into account if the program is to perform at high efficiency.
For example, it is almost essential to consider the program as a whole rather than a series
of independent subroutines. Of particular importance and complexity is the problem of
determining when dynamic data redistribution will enhance overall performance.

Fortunately, the designers of languages like HPF and Fortran D [14], by requiring
that data layout specifications be provided by the programmer, have opened the door for
powerful new tools which can use intensive computation to determine a first approximation
to a good data layout automatically. Because these tools are not embedded in the compiler
and will be run only a few times during the implementation phase of a project, they
can use techniques that would be considered too computationally intensive for inclusion
in compilers, even on today's powerful supercomputers. Furthermore, by providing a
high-level target language for these tools, HPF and similar languages have dramatically
simplified the implementation of data layout tools.

In this paper, we will describe a data layout tool that uses a number of techniques from
linear and integer programming. Integer programming is required because the automatic
data layout problem that we solve is NP-complete. Evidence will be presented that our
approach will be efficient enough for use in a programming assistance tool.

Our ability to solve integer programming problems has been remarkably improved
over the last five to ten years, particularly pure 0-1 integer problems such as those being
generated here. The basic technique for solving integer problems is to apply intelligent
branch-and-bound using linear programming at the nodes. Important improvements have
come in three areas. First, linear programming codes are on average approximately two
orders of magnitude faster than they were five years ago, particularly for larger problems
[61. Combined with the improvements in computing speed over that same period these
codes represent an approximate four orders of magnitude improvement in our ability to
solve linear programming problems.

The second major development is in so-called cutting-plane technology. Motivated by
work of Dantzig, Johnson and Fulkerson in the 50's [121, Padberg, Groetschel and others
have shown how cutting-plane techniques could be used to strengthen the linear program-
ming relaxations of many pure 0-1 integer programming problems (25]. The strengthening
is effected by studying the facets of the underlying polytope generated by the convex hull
of 0-1 solutions. Knowledge of these facets leads to subroutines for recognizing inequal-
ities violated by the current fractional solution. These violated inequalities can then be
added to the linear programming formulation in lieu of branching.

The third major area of improvement has come in the application of parallel processing
to handle the branching when cutting planes do not succeed in sufficiently strengthening
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the linear programming formulation. Parallelism is particularly appropriate for current
cutting-plane methods because cuts are computed not only at the root node but at all
nodes in the branching tree. Tile extra computation at the nodes has the effect of making
the computations sufficiently coarse grained that communication costs need not be signif-
icant. The most striking example of an integer programming success story exploiting all
of the above advances is the recent work of Applegate, Bixby, Cook and Chvatal in which
a 4461 city traveling salesman problem was solved to exact optimality using a complex
branch-and-cut code running on a network of up to 60 loosely connected workstations [3].

2 Framework for Automatic Data Layout

The choice of a good data layout for a program depends on the compilation s3stern, the
problem size, the number of processors used, and the performance characteristics of the
target machine architecture. Our proposed framework for automatic data layout will
determine a good data layout for a given compilation system. Although this framework is
not designed to be used inside the compilation system, it knows about the transformations
and optimizations performed by the compilation system. The data layout is optimized for
a target distributed-memory machine, a specific problem size, and the number of available
processors, which implies that these entities have to be known at tool invocation time.

This section gives an overview of the proposed framework for automatic data layout
for regular problems. Typically, regular problems represent data objects as dense arrays
as opposed to a sparse representation. Regular problems allow the compilation system
to determine the communication requirements and to perform a variety of program op-
timizations at compile time. The framework assumes that different data layouts -an be
specified for different program sections. Our proposed strategy for automatic data layout
in the presence of dynamic data remapping consists of several steps, each discussed briefly
in the remainder of this section. A detailed program example can be found in Section :3.

2.1 Overview
The initial step partitions the program into code segments, called program phases. Data
remapping is allowed only between phases. A phase is the outermost loop in a loop nest
such that the loop defines an induction variable that occurs in a subscript expression
of an array reference in the loop body. This operational definition does not allow the
overlapping or nesting of phases. Other strategies for identifying program phases are a
topic of current research. Note that loop transformations such as loop fusion or loop
distribution can change the partitioning of a program into phases. The discussion of
transformations in the context of phase recognition is beyond the scope of this paper.

The phase structure of the program is represented in the phase control flow graph, an
augmented control flow graph [1] where each phase is represented by a single node. The
graph is annotated with branch probabilities and loop control information.

In the second step, the program alignment space is determined. The program alignment
space corresponds to a single HPF template or a single Fortran D decomposition. All
alignments and distributions are specified based on this unique program alignment space.

In the next two steps, data layout search spaces are constructed for each phase. A
data layout for a single phase is specified by the alignment and distribution of all arrays
referenced in the phase. First, alignment analysis builds a search space of reasonable
alignment schemes for each phase. If arrays have fewer dimensions than the program
alignment space, alignment analysis may generate different embeddings for the arrays.
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Then, distribution analysis uses the alignment search spaces to build candidate data layout
search spaces of reasonable alignments and distributions for each phase. A preliminary
discussion of possible pruning heuristics and the sizes of their resulting search spaces can
be found in [161.

After the generation of the search spaces, a single candidate data layout is selected for
each phase, resulting in a data layout for the entire program. This step solves the so-called
tntcr-phasr data layout problem. The inter-phase data layout problem will be described
in more detail in the next section. The selected candidate layouts have minimal overall
cost. The overall cost is determined by the costs of each selected candidate layout, and
the required remapping costs between selected candidate layouts. Note that the optimal
data layout for a program may consist of candidate data layouts that are each suboptimal
for their phases. Tile selection process is based oil static performance estimates of the
candidate data layouts and of data remappings between layouts. A static performance
estimator suitable for automatic data layout has been discussed elsewhere 14, 14]. The
l)erformance estimator will mimic the compilation process for single phases. It will use the
training set approach to determine communication and computation costs of the target
machine architecture.

In the final step, data layout specifications are generated. The program alignment
space is represented by a single decomposition or template statement. A data flow
problem over the phase control flow graph is solved to avoid redundant specifications of
alignments and/or distributions for the selected candidate data layouts. The final data
layout specifications art- translated into corresponding align and distribute statements.

2.2 Inter-phase Data Layout Problem

rhe inter-phase data layout problem is modeled as an optimization problem over the data
layout graph. The data layouit graph has one node for each candidate data layout. Edges
represent possible remappings between candidate data layouts. Nodes and edges have
weights representing the overall cost of each layout and remapping, respectively, in terms
of execution time. The costs reflect the frequencies or probabilities of phase execution.
A data flow problem over the phase control flow graph can be solved to determine these
probabilities. The proposed data flow problem is similar to a reaching definitions problem
[1] that additionally determines the probability that a definition reaches a given point in
the program.

The initial formulation of the inter-phase data layout problem as an optimization
problem over the data layout graph does not model the possible overlap 'f communication
and computation between phases. However, the static performance estimator for each
single phase will take the effect of compiler generated wavefronts inside a phase into
account [27]. In addition, the initial formulation requires that only a single copy of an
array can exist at any time during program execution, unless the array is replicated due
to multiple ownership. This restriction can be relaxed by adding additional remapping
edges. The placement of these remapping edges is a topic of current research.

The inter-phase data layout problem is proven to be NP-complete [21]. The proof is
based on a reduction from the 3-CNF satisfiability problem (3-SAT) [111. However, in
the special case where each candidate layout specifies a mpping for every array in the
program, the inter-phase data layout problem can be solved in polynomial time in the
size of the data layout graph. The polynomial time algorithm uses dynamic programming
to solve multiple single-source, shortest path problems over the data layout graph [221.

In this paper, we focus on methods to compute the optimal solution of the inter-
phase data layout problem with only a single copy of each array at any time during
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the execution of the program. An instance of the inter-phase data layout problem is
translated into a 0-1 integer programming problem suitable to be solved by CPLEX2 , a
linear integer programming tool partly developed by Robert Bixby at Rice University [51.
We give experimental results for our 0-1 integer programming formulations for an 800
line benchmark code developed by Thomas Eidson at ICASE.

3 Example Program

The following example illustrates the framework for automatic data layout. Figure IA
shows an Alternating Direction Implicit (ADI) integration kernel. ADI integration is a
technique frequently used to solve partial differential equations (PDEs). The operational
phase definition partitions the code into eight phases (see Section 2.1). The first phase
and the last phase are loop nests that perform input and output operations, respectively.
The resulting phase control flow graph is shown in Figure 1B. The program has a two-
dimensional alignment space of size N in each dimension. To simplify the example, we
assume that alignment analysis builds alignment search spaces that map the three arrays
a, b, and c canonically onto the program alignment space. To simplify the example even
further, we assume that distribution analysis generates only two candidate data layouts for
each phase, namely a row layout and a column layout. The resulting data layout graph is
shown in Figure IC. The edges represent possible remappings of arrays between candidate
data layouts. To model the effects of the iterative loop, the data layout graph contains
edges between the layouts of the seventh phase and the second phase. The node and
edge weights are the estimated costs for phase execution and remapping, respectively,
in terms of execution time, multiplied by their predicted execution frequencies. The
cost for transposing a single array is denoted by T. max is the number of iterations in
the iterative loop. A static performance estimator together with the computed phase
execution frequencies will be used to determine the node and edge weights [4, 14].

To solve the inter-phase data layout problem, a single candidate data layout must be
chosen for each phase such that the overall cost of the selected layouts is minimal. The
overall cost of a set of selected layouts is the sum of the weights of their representing
nodes and the weights of all edges between these nodes. The solution requires that the
value of max is known.

The execution of the ADI integration kernel consists of a repeated sequence of for-
ward and backward sweeps along rows, followed by downward and upward sv eeps along
columns. For the sweeps along the rows, a row layout has the best performance. The same
holds for a column layout for the column sweeps. Transposing the arrays between the row
and column sweeps, i.e. between phases 4 and 5, and between phases 7 and 2, eliminates
communication within phases. In contrast, choosing the same data layout for both, row
and column sweeps will avoid communication between phases but will make communi-
cation necessary inside some of the phases. The right choice will depend on the speed
of the communication hardware and software of the target distributed-memory machine,
and the ability of the compiler to exploit pipelined parallelism efficiently. In addition,
the performance characteristics of the underlying I/O system has to be considered for the
candidate layouts of the first and the last phase. Figure 2 shows two different data layout
specifications that may be generated by the automatic tool. The left hand side shows a
static, column-wise data layout. The right hand side depicts a dynamic data layout where
transpose operations will be performed between the row and column sweeps.

2 CPLEX is a trademark of CPLEX Optimization, Inc.
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DOi= 2, N ....I2"-'•...
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ENDDOC
ENDDO I cabcabpo
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Do j =1.N c, abc
DO =2,N N
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END DO g
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ENDDO bI
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(A) (B) (C)

Figure 1: ADI integration kernel with three array variables. A: Source code with phase
partitioning. There are eight phases. The loops representing the first and the last phase
are not shown. Each phase references either two or three arrays. B: The phase control
flow graph for the phase partitioning. C: The data layout graph for the candidate data
layout search spaces of the phases. To simplify the example, we assume that there are only
two candidate data layouts in each search space. Weights represent static performance
estimates of overall execution times. Node weights are not shown. Unlabeled edges have
zero weight. T is the cost of performing a single array transpose, and max is the number
of iterations of the outermost loop of the ADI integration kernel.
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REAL c(N. N). &(n, N), b(N, N) REAL c(N. N), a(n, N), b(N. N)

II Sc Colunm-wise layout II Dynamic row and colurn-wise layout

!HPF$TEMPLATE X(N, N) U 'I-TEMPLATE X(N. N)

.HPF$ ALIGN ci• j). aQ, j). b(i, j) WITH X(i,j) INWP$ DYNAMIC X
!HPF$ DISTItBUTE X(:. BLOCK) s HP3$ ALIGN c(i, j), a(i. j), b(i, j) WITH X(i, j)

'HPIF$ DISTRIBUTE X(:, BLOCK)

DO ins= 1. nua DO iter= I, ma

I Forward and backward sweeps along rows // Forward and backward sweeps along rows

'HPF$ RE•ISTIUBUTE X(BLOCK.:)

// Downward and upward sweeps along colu•ns #I Downward and upward sweeps along coluorns

-HPF$ REDISrRIBUTH X(:, BLOCK)

ENDDO ENDDO

Figure 2: Example output of the proposed framework for automatic data layout for the
ADI integration kernel. The left hand side shows a static column-wise data layout, and
the right hand side shows a dynamic layout that performs transposes between the sweeps
along rows and columns.

4 Related Work

The problem of finding an efficient data layout for a distributed-memory multiprocessor
has been addressed by many researchers [2, 8, 9, 10, 13, 15, 17, 18, 19, 23, 24, 26, 28].
The presented solutions differ significantly in the assumptions that are made about the
input language, the possible set of data layouts, the compilation system, and the target
distributed-memory machine. Even though many researchers have recognized the need
for dynamic remapping and are planning to develop solutions, our work is one of the first
to provide a framework for automatic data layout that considers dynamic remapping.

Knobe, Lukas, and Dally [19], and Chatterjee, Gilbert, Schreiber, and Teng [9, 10]
address the problem of dynamic alignment in a framework particularly suitable for SIMD
machines. Anderson and Lam discuss techniques for automatic data layout for distributed
and shared address space machines [2]. Their approach considers dynamic remapping.
Lee and Tsai propose a dynamic programming algorithm to determine a data layout for
a sequence of loop nests, allowing remapping between the loop nests [231.

In contrast to most of the previously published work, our framework is designed to work
in the context of a programming assistance tool, not inside a compiler. As a consequence,
the framework can use techniques that may be too expensive to be included in a compiler.

5 Inter-phase Data Layout as a 0-1 Problem

This section discusses the details of translating an instance of an inter-phase data layout
problem and its data layout graph into an instance of a 0-1 integer programming problem
with linear constraints, or 0-I problem for short. For the purpose of this discussion, we
assume that the input program has n phases, PF,... Pn. The corresponding data layout

.. ... .. ... ... ..
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Figure 3: A: Layout constraints for the first three phases. B: Remapping constraints for
the first candidate layout in the fourth phase. Switch x41 represents this layout.

graph has mi nodes for each phase i, I < i < n. Remember that each node represents
a particular candidate data layout that specifies the alignment and distribution of all
variables referenced in the phase.

Aii instance of a 0-1 problem consists of a set of variables X, a set of linear constraints
over the variables in X, and a linear objective function with domain X. A solution to an
instance of the 0-1 problem is a function s01 : X -- {O, 1} that minimizes the objective
function while respecting the constraints.

The translation introduces a variable for each node and edge in the data layout graph.
These variables can be thought of as switches that are on if and only if the represented
nodes or edges are part of a solution of the inter-phase data layout problem. The set X is
the union of two sets of variables, X = Xiaýout U Xremap. Xtayout contains a single switch
for each node in the data layout graph, and Xremap has one switch for each edge. The
switch xik E Xt05 uot represents the k-th node of the i-th phase. The switch x i E Xremap
represents the remapping edge between the /-th node of phase j and the k-th node of
phase i.

Similar to the variable set X, the set of constraints is partitioned into two classes.
Constraints that ensure the selection of only a single node for each phase are called layout
constraints. For each phase i, 1 < i < n, there is a constraint of the form E X =I,
In other words, exactly one switch has to be on for each phase and all other switches for
the phase have to be off. The layout constraints for the first three phases of our example
data layout graph (Figure 1C) are shown in Figure 3A.

Remapping constraints guarantee that all remapping edges between selected nodes are
considered, i.e. are also selected. For each node in the data layout graph, there are two
types of remapping constraints, namely IN-constraints and OUT-constraints.

For the node represented by xik and all incomin. edges with nodes in the same phase j
as their sources, IN-constraints of the form E"-' xj = Xik are generated. In other words,

if switch zik is on then exactly one switch representing an incoming edge from phase j
must be on. If Xik is off then all incoming edge switches have to be off.

Similarly, for the node represented by Xik and all outgoing edges with nodes in the
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same phase j' as their sinks, OUT-constraints of the form E,' xjq, = Xk are gencrated.
The remapping constraints for the node representing the first layout in the fourth phase
of the ADI integration example, x41, are listed in Figure 3B.

A solution so, of an instance of the 0-1 problem minimizes the following objective
function under the above constraints:

Zx,kEX,..... Xk Costtayout (Xzk) + zkE•X .. Xk cost .r.ap (xik)

where costiayoot and costemap represent the node and edge weights of the data layout
graph, respectively.

Note that we also investigated other valid formulations of the data-layout problem as a
0-1 problem. However, these other formulations turned out to be inferior to the presented
formulation in terms of the time CPLEX needed to compute the optimal solution. A more
detailed discussion of the different formulations can be found elsewhere [7].

6 Experiments

All of our experiments are based on ERLEBACHER, a 800 line benchmark program written
by Thomas Eidson at the Institute for Computer Applications in Science and Engineer-
ing (ICASE). The program performs 3-dimensional tridiagonal solves using Alternating
Direction Implicit (ADI) integration. The code contains computational wavefronts across
all three dimensions. Array kill analysis was performed by hand and arrays were renamed
and replicated appropriately. The resulting program contains 40 phases and 25 arrays.
There are arrays with one, two, and three dimensions.

ERLEBACHER has a three-dimensional alignment space. For our experiments, we as-
sume that alignment analysis and distribution analysis generate seven candidate layouts
for each phase, one layout for each possible combination of distributed dimensions. How-
ever, if a phase contains only one-dimensional arrays, its candidate search space has only
four layouts since some layouts are the projection of two distribution schemes. The corre-
sponding data layout graphs with different weights were generated by hand. Weights were
chosen to model different communication costs and the presence or absence of compiler
optimizations. For instance, a compiler may be able to generate a coarse-grain pipelined
loop if the data layout induces cross-processor dependences [27]. Whether the compiler
performs such an optimization or not is represented by different weights given to the
nodes.

We wrote a tool that generates the 0-1 problem formulation (see Section 5) for a given,
weighted data layout graph. The remapping costs for individual arrays are handed to the
tool as a cost table. The tool automatically generates the edge weights of the correspond-
ing data layout graph based on this cost table. The generated 0-1 problems have 253
layout switches, 2133 remapping switches, and 715 layout and remapping constraints.

For the experiment, twelve 0-1 problems were automatically generated. Each of the
0-1 problems was solved by CPLEX, a linear integer programming tool. CPLEX includes
an implementation of a general-purpose branch-and-bound code for mixed integer pro-
gramming. Being general purpose, this code does not exploit the structural properties
of our particular 0-1 problems. The experiments show that our 0-1 formulation can be
solved by the general-purpose CPLEX in less than 4 seconds on average on a SPARC-10
workstation. For one 0-1 problem instance, CPLEX determined the optimal solution
in 2.6 seconds. CPLEX did not take longer than 4.8 seconds on any of the twelve 0-1
problem instances.
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0-1 integer programming is NP-complete. Therefore, it is unrealistic to expect a
solution for all instances in minimal computation time. However, recent experience with
other NP-hard problems formulated as 0-1 integer programs - principally the TSP -
indicate that a careful study of structure of the particular integer program can lead
to very effective practical procedures. Recent work on the TSP again provides a good
example of what one can hope for. Using the well-known TSPLIB test set of problems,
we have been able to solve to exact optimality all instances with fewer than 2000 cities,
with the notable exception of one 225 city instance for which our cutting plane methods
simply do not seem to be effective. However, it is interesting to note that for this one
instance, it is symmetry that makes that problem difficult for our algorithms. That
very symmetry implies that various heuristic procedures easily find the optimal solution
(provably optimal by an independent analysis of problem structure). For the problem
at hand, namely the inter-phase data layout problem, a similar approach is proposed
in which inexact heuristic procedures would be applied if integer programming fails to
find a solution within acceptable time limits. We remark in this context that we would
expect our branch-and-cut algorithm to be computing both upper and lower bounds as
it proceeds. If the computation is terminated prior to optimality, these bounds would
provide estimates of the solution quality.

CPLEX is also designed to be applied as a callable library of linear-programming
routines that can be conveniently built into a branch-and-cut code, such as a special
purpose solver for the inter-phase data layout problem.

7 Future Work

So far, the discussion of the our proposed framework has ignored procedure calls. All steps
of the framework as discussed in Section 2.1 will have to be performed interprocedurally.
For the inter-phase data layout problem, we plan to use the following approach in the
absence of recursion. The data layout graphs of subroutines can be propagated bottom-up
along the edges of the call graph, resulting in a single data layout graph for the entire
program. If the compilation system performs procedure cloning, a distinct copy of a
procedure's data layout graph is propagated along each edge in the call graph. This
strategy has been used to hand generate the data layout graph of the ERLEBACHER code
used for the experiments discussed in Section 6. In the absence of cloning, each procedure
is represented by a single copy of its data layout graph in the data layout graph for the
entire program.

We are currently investigating the support of data replication in our framework. There
are two forms of data replication. Data replication that consists of multiple copies of an
array with distinct owners for each copy will be handled during the construction of the
candidate search spaces, i.e. search spaces may contain candidate layouts that specify
multiple owners of an array. Data replication that refers to multiple copies of an array
with only a single owner can be modeled by additional remapping edges in the data layout
graph. The IN and OUT-constraints of our presented 0-1 problem formulation will have
to be slightly modified to accommodate the new edges. Additional constraints can be
used to enforce an upper bound on the number of copies of an array.

The proposed framework for automatic data layout is currently being implemented as
part of the D programming environment. The implementation will provide the basis for
the validation of our proposed techniques.
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8 Conclusion

We have presented an approach to automatic data layout in the context of a programming
tool that produces High Performance Fortran or a similar language as output. This has
permitted us to explore exact solutions to the problem of automatic data layout, even
though our formulation of the problem is NP-complete. Through the use of the latest and
most powerful general purpose techniques for linear and integer programming, we have
shown the technique to be practical for a full-sized application.

Recent experiences with similar NP-complete problems indicate that special purpose
linear and integer programming techniques can be used to compute the exact solution even
faster. These special purpose techniques will take advantage of the particular structure
of our formulation of the data layout problem.
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Abstract: The computation partitioning, communication analysis, and optimization
phases performed during compilation for distributed-memory multicomputers require an
efficient way of describing distributed sets of iterations and regions of data. Processor
Tagged Descriptors (PTDs) provide these capabilities through a single set representation
parameterized by the processor location for each dimension of a virtual mesh. A uniform
representation is maintained for every processor in the mesh, whether it is a boundary or
an interior node. As a result, operations on the sets are very efficient because the effect on
all processors in a dimension can be captured in a single symbolic operation. In addition,
PTDs are easily extended to an arbitrary number of dimensions, necessary for describing
iteration sets in multiply nested loops as well as sections of multidimensional arrays. Using
the symbolic features of PTDs it is also possible to generate code for variable numbers
of processors, thereby allowing a compiled program to run unchanged on varying sized
machines. The PARADIGM (PARAllelizing compiler for DIstributed-memory General-
purpose Multicomputers) project at the University of Illinois utilizes PTDs to provide
an automated means to parallelize serial programs for execution on distributed-memory
multicomputers.

Keyword Codes: C.1.2; E.2
Keywords: Multiprocessors; Data Storage Representations

1 Introduction
A parallelizing compiler for distributed-memory multicomputers must be able to: (1) de-
scribe decompositions of arrays and loops across a number of processors, and (2) translate
indices and iterations between global and local address and iteration spaces. There is a
need for a representation capable of describing partitioned polyhedra of arbitrary dimen-
sions in any of these spaces. It must also provide a flexible structure for performing
high-level set operations required in both computation partitioning and communication
optimizations [11]. This paper describes how PTDs efficiently provide all of these capa-
bilities. In addition, a key feature of PTDs is the support of code generation for variable
numbers of processors. Not only does this allow a compiled program to run unchanged on

*This research was supported in part by the Office of Naval Research (Contract N00014.91J-1096),
and in part by the National Aeronautics and Space Administration (Contract NASA NAG 1-613).
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varying sized machines, but it is also useful when selecting the number of tasks for multi-
threaded execution [91 or for varying the number of processors assigned to a given task
when utilizing functional parallelism [12]. In contrast, most ongoing work on compilers
for distributed memory (3, 5, 8, 10] can only compile for a fixed number of processors.

Earlier structures describing index or iteration space arose in the context of interpro-
cedural data dependence analysis. They include the Regular Section Descriptor (RSD) [4]
and the Data Access Descriptor (DAD) [2]. RSDs can only describe a single row, column,
or diagonal of an array, or the entire array. DADs describe convex polyhedra bounded by
hyperplanes that are either orthogonal to an axis or at 45' angles with a pair of axes. Both
representations are only able to define regions in an unpartitioned address space. The
Fortran D compiler [8] uses the RSD augmented with three component sections for each
dimension to handle boundary conditions, which are often present in partitions owned
by boundary processors. However, when the exact set boundaries are not computable at
compile time, it maintains an individual iteration or index set per processor.

The Stanford SUIF compiler system [15] models data and computation decompositions
using a form of parametric integer programming. Its representation is parameterized with
processor information and is able to handle symbolic block sizes but results in multi-
version copies of loops.' It also only supports global index and iteration domains, while
local index translation is performed at run time for all distributed array accesses [N].

The PTD and defined operations are presented in Section 2. The application of PTDs
in the PARADIGM compiler is described in Section 3, and conclusions appear in Section 4.

2 Processor Tagged Descriptors

The PTD is a set representation parameterized by processor coordinates. This provides
a uniform and efficient means of describing sets of iterations or sections of arrays that are
partitioned across processors. A PTD in n dimensions is a collection of one-dimensional
PTDi (1 < i < n), each of which has as a lower and upper bound. Each bound is a
symbolic expression involving a processor coordinate (Pi) along dimension i of the mesh:r linear-expr(pi)

PTDi = [lowerbound : upper~bound] bound = min(bound, bound)
lower-bound = bound I [boundl max(bound, bound)

upper-bound = bound I Lboundi linear-expr(pi) = sym-expr . pi + sym-expr

where sym-expr is a scalar symbolic expression (expressions involving constants and pro-
gram variables). Each PTDi captures the range of integers between the lower and upper
bounds in a single dimension. Together, they span the entire n-dimensional region. Since
the PTD is parameterized by processor coordinates, it provides a uniform representation
for every processor in the mesh. This is regardless of the shape and size of the partition
and whether it resides in a boundary or an interior processor in the mesh. Furthermore,
set operations on these partitions are very efficient because all processors in one or more
dimensions can be captured into a single symbolic set operation.

Figure 1 shows the PTD for an array A(40, 40) partitioned by blocks on a 4 x 2 processor
mesh. A1 (first dimension of A) is distributed along the first dimension (4 processors) of
the mesh and A2 along the second dimension (2 processors). Section 3.1 defines this as the
IMAGE of A. Each processor is identified by its coordinates (pl,P2), with pi E {0, 1,2, 3}

'For each dimension of a decomposition, SUIF generates three different versions of each partitionable

loop (two boundaries and a core computation). For n-dimensions this results in code expansion of 3'.
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DO i = 5,35
DOj = 2,i+2

(o., o,•) •,, (3.,... A (i, j) ... ., . , ,,

21 A(40 4) 21

2C 2C

(0.0) (1.0) (2.0) (3.01 (0.0) (1.0) (2.1 (3.0)

I 3o 11 20 21 M 31 40 I 10 11 20 21 3031 40

PTD1 = [1 + 10p! :10 + 10pi] i E PTD -= [maz(5, 1 + 10pi) : min(35, 10 + 10pi)]
PTD2 = (I + 20p2 : 20 + 20 p21 j E PTD2 = [mar(2, 1 + 2Op2): min(i + 2,20 -+- 

20 p2)]

Figure 1: Partitioned Array A(40,40) Figure 2: Partitioned Iteration Space

and P2 E {0, 1). Given any processor p = (pI,p2), the bound expressions of the PTI)
shown in the figure define the regions of A stored in p. Let A(i,j) be referenced in the
loop nest as shown above. If the iteration space were partitioned such that p executes
iteration (i,j) if p accesses A(i,j) locally, the resulting description would be as shown
in Figure 2. Although all of these regions have different sizes (from 0 in p = (0, 1) to
10 x 19 in p = (2,0)) or shapes (null, rectangular, triangular, and trapezoidal), a single
PTD describes them all. Section 3.1 refers to each partition as the ACCESS iteration set
of A(i,j) with respect to p.

2.1 Variable Number of Processors

On most multicomputers, users are able to request the size of a machine partition on
which to run programs. Given a fixed size array, the more processors available at run
time, the smaller the array partition accessed by each processor (since bi o -L). The
compiled program must adapt itself to the configuration of the machine partition on
which it runs. The PTD supports variable processor compilation by retaining the block
sizes of distributed array dimensions, bi, as symbolic variables (described in Section 2.3).

Many implementation issues arise when dynamically allocating memory which has to
be accessed in a multidimensional fashion. One solution is to linearize all partitioned n-D
arrays, as used by APR in the FORGE xHPF parallelizer, at the expense of evaluating
complicated array subscripts for each reference at run time. A simpler approach, currently
used in PARADIGM, is to require the user to specify a minimum processor configuration
at compile time. This allows memory to be statically partitioned for the minimum con-
figuration (retaining any dimension information) while allowing the number of processors
to grow beyond this lower bound. Since the required block sizes of the partitioned ar-
rays decrease with increasing number of processors, all accesses are contained within the
partitioning of the minimum configuration while retaining multidimensional access.

2.2 Set Operations

To work with PTDs, several relational tests are defined to detect subset, disjoint,
and null set conditions. Union, intersection, and difference functions are also defined to
perform multidimensional operations on the sets. Figure 3 shows algorithms for the PTD
set operations. Note that the representation is closed under intersection while a union
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is.subset(td)(A, B) are-disjoint(ld)(A, B)

if A = 0 return(true) if (A = 0 or B = 0)

else if B = 0 return(false) return(true)

else if ((lb(A) >_ lb(B)) or (ub(A) ub(B))) else if ((ub(A) < ib(B)) or (1b(A) > ub(B)))

return(true) return(true)

else return(false) else return(false)

(a) Subset Relation (Ai 9 Bi) (b) Disjoint Relation (A,flB, = 0)

(A = 0) * (lb(A,) > ub(AJ) ) " for some dimension i

(c) Null Set Relation (A 0)

union(A, B)
for i = 1 to dim do intersection(A, B)

if Ai = 0 Ai U B, = Bi for i = i to dim do

else if Bi = 0 Ai U Bi = Ai if are-disjoint~1 d)(Ai, B,)

else if are-disjointtld)(Ai, Bi) Ai nBi = 0

AiUBi = Ai + Be else AinBi = [max(lb(Ai).lb(Bi)):

else Ai U Bi = [min(lb(Ai), lb(Bi)) done min(ub(Ai), ub(Bi))l

max(ub(Ai), ub( Bi))]
done

(d) Union Operation (A UB) te) Intersection Operation (A( B)

difference(A, B)
for i = 1 to dim do

if are.disjoint(ld)(A,, Bi) Ai - Bi = Ai

else
T = [lb(Ai): lb(Bi)-l] U [ub(Bi)+1 ub(Ai)]
kernel = T fl A,

done
A - B = stretch(kernel, AfB)

(f) Difference Operation (A - B)

Figure 3: Algorithms for Performing Set Operations on PTDs

A A

SI•I stretch(K, A flB)

B

A-B K =kernel(A - B) D=A-B

Figure 4: Stretch of a Difference Kernel
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Y P2 Partitioned Set A
(2I -P, x E PTDI = [l+ 10p' 10+ lop,]

O X -P, yYE PTD2 = [I + 10p2 min(x/2, 10 + 10p2)]
Set Axes Pro0S" •lesh

V Partitioned Set B

n XE P'T), = [1 + lop, :nin(35. 10 + lop,)]

( E PTPD 2 = [1 + 1
0 p2 :rin(35 - x, 10 + 10p.2)]

21 Partitioned Set Union A U B

,,zEI[D1 =[+ lop, : 10+10p,]

yE PTD2 = [I + 
10p12 : rnin(10+ lOp2,.rTnax(/2,35- r))J

Partitioned Set Intersection A4 flB
(o0I) ( 2,1 '2 1 (3 I)

x c. P'rD, = [1 + lop, :rin(35, 10 + lop,)]
0.0) > (3.0) y P PTD2  = [1 + l0p, rnin(mnin(.r/2, 10 + 10p?).35 - x)]

1 10 I1 2 1 1 30 S1 40

Partitioned Set Difference A - B
(2,, I N._ 1" x EPTDI = 1] + lop, ; 10 + lOp,)

0o.0) (,0) (E.0) E PTD2 = [min(36 - z, 11 + 1Op2) : nin(x/2, 10 + lOp2)]

1 10 11 20 21 W0 31 Q0

Figure 5: Examples of Set Operations between two PTDs A and B

or difference can potentially result in a list of sets. In Figure 3f, the difference operation
is seen to perform a stretch operation after computing an n-dimensional "kernel". The
kernel of a difference can be thought of as the region in which all 1 D differences intersect
when projected into n dimensions. The kernel is then stretched over the intersection of
the original sets. This is done by choosing up to (n - 1) non-null dimensions from one set
and selecting the remaining dimensions from the other (see Figure 4).

Figure 5 shows an example of how a union, intersection, and difference are performed
between a triangular region A and a trapezoidal region B, both partitioned on a 4 x 2
processor mesh. As shown in the figure, the first axis, r, is aligned with the first procossor
mensh dimension pi, and y is aligned with P2. In the figure, each shaded region corresponds
to the accompanying PTD expressions. PTD, defines its i-values, and PTD2 defines the
y-values as a function of the x-values (the expressions have been simplified where possible).

2.3 Symbolic Bound Comparison
Symbolic comparison is used to determine relations between bounds of PTDs as well as
to maintain simplified bound expressions. The details involved in performing symbolic
comparison between the expressions supported in PTDs are not included here due to space
constraints. The basic approach taken to perform comparisons between two expressions
is based upon a hierarchy of symbolic comparisons at different levels of complexity.
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At the lowest level, symbolic comparison is performed between a pair of symbolic scalar
expressions (expressions involving constants and variables) by simplifying a difference of
the two expressions. For symbolic linear expressions (a linear expression with symbolic
scalar coefficients), linear comparisons can be made within a desired range using scalar
comparison between the coefficients. Comparison of symbolic binary expressions (a min or
max of two symbolic linear expressions) can be performed with comparison lattices using
linear comparisons between components. These levels are applied recursively to perform
comparison*s of nested binary operations on linear expressions of symbolic quantities.

Symbolic Comparison with Variable Processors Recall that the block sizes of
partitioned arrays are allowed to vary with the number of processors Pi assigned to the
mesh dimension. Given a dimension of a distributed array of size N, the block size is
computed as b, = f.P" Since all array dimensions mapped to the same mesh dimension
will vary together (with respect to P,), comparison relations still exist between symbolic
block sizes although the actual value of the block size is not known at compile time.

To support comparison of symbolic block sizes the symbolic scalar comparison opera-
tion is further abstracted using mirrors. A mirror retains information that would other-
wise be lost if the source of the symbolic quantity were ignored. For symbolic scalars, an
n-dimensional polynomial is used to mirror the value involving symbolic block sizes:

fPi + P +... + q3 P;' + 3, Pp' + c

where / are block sizes based on a minimum processor configuration and c is a constant.
Whenever symbolic scalars are encountered, comparison can be performed by component-
wise comparisons of each of the corresponding coefficients of the mirrors maintained for
each scalar. 2 Any arithmetic operation that is performed on a symbolic expression must
also be performed on the corresponding mirror polynomial. For use in the compiler, it is
sufficient to support polynomial addition/subtraction, and scalar multiplication/division
on these mirrors.

3 Use of PTDs in Compilation

Both data and computation decompositions can be represented using PTDs. In t.his
section we examine the use of PTDs in the PARADIGM compiler [7]. During analysis
of the reference patterns in a program, PTDs are transformed among different domains.
Altogether, four domains can be defined: global and local indices (GN and LN), and
global and local iterations (GI and LI). Transformation functions (and their inverses)
among the different domains are:

Global Localrp(i)

Indices GN -'--- LN
s-'(i) !T s(i) I s(i)

Iterations GI --- * LI
AP(i)

2Since any dimension of a mirror is affected by the constant term, c is added to non-zero coefficients

during comparisons. Constant scalars also have implicit mirrors where c is equal to the numeric value.
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The subscript function s(i) of an array reference A(s(i)), enclosed in a loop, transforms
points from the loop's iteration space into the index space.' For simplicity, in this paper
s(i) is allowed to be a linear function4 of a loop variable i: s(i) = ati + ao. The index
translation function rT transforms points in the global index space into indices local to
a processor p: r,(x) = x - bp, where b is the block size of distribution. Similarly, the
iteration translation function AP transforms points from the global iteration space into
iterations local to a processor p: Ap(i) = i - bp.

3.1 Data Partitioning
IMAGE Global Index Sets Using the data partitioning provided by the user or gen-
erated by the compiler [6], PTDs in the global index domain (GN) can be generated fo;
each partitioned dimension of a distributed array. For each array A(1 : N) distributed
across a processor mesh dimension of P processors indexed by p (0 < p < P - 1), the
corresponding PTD describing this partitioned array is

PTD = [1 + bp: b+ bp]

where b = [N] is the block size of A. This PTD is called the IMAGE of A on p, denoted

IMAGE(A,p). This expression assumes that the alignment offset w of A on the mesh
dimension is w = 0, and that the indices of A start at 1. In general, we may have
A(a : N + a - 1) and w 5 0, and then IMAGE(A,p) becomes

IMAGE(A,p) = [max(a, a + w + bp) : min(N + a - 1, b + w + bp)]

If w > 0, then we need some p < 0 to address the leftmost w elements of A. Similarly,
if w < 0, then some p > P - 1 is required to address the rightmost w elements of A.
In either case, we can define pý = p mod P as the real processor coordinate. To avoid
unnecessarily obscuring the expressions derived, we assume W = 0 and a = 1.

ITERIMAGE and AccEss Global Iteration Sets From the IMAGE index set of A,
the ITERIMAGE and ACCESS global iteration sets (in GI) of each reference A(s(i)) can
be computed. The ITERIMAGE set of A(s(i)) with respect to a processor p is the set
of iterations i, unrestricted by loop bounds, such that A(s(i)) is stored in p. Since the
partition of A stored in p is given by IMAGE(A,p), we can write

ITERIMAGE(A(s(i)),p) = {i I s(i) E IMAGE(A,p)}

= [[s-'(1-+-bp)] : Ls-'(b+bp)J]

For A(s(i)) enclosed in a loop nest in which the i-loop goes from I to u, AccEss(A(s(i)), p)
is defined as the set of iterations i in the i-loop for which A(s(i)) is stored in p:

ACCESS(A(s(i)),p) = ITERIMAGE(A(s(i)),p) ni [l u]

= ffmax(l,s-'(1 + bp))] : [min(u,s-'(b+ bp))J]
3 For simplicity of notation, it suffices to use one-dimensional arrays in the discussion. For n dimensions,

thert is a PTDI per dimension. Thus, A(s(i)) should be thought of as A( .... s(i) .... ).
"4The more general case of affine subscript functions over enclosing loop variables can also be handled.

If i is the innermost loop variable that appears in the subscript, then s(i) = aii + ao still holds by
letting a0 be an affine function over the rest of the loop variables. Some additional conditions for loop
partitioning must be observed when such subscripts are allowed.
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3.2 Computation Partitioning

The compiler applies the owner computes rule which states that the processor owning
a data item performs all computations for that item. An efficient implementation must
avoid the run-time overhead of computing ownership. For a loop nest, this is done by
reducing the loop bounds according to the Reduced Iteration Set [8] (RIS) of the loop.
This is the union of the ACCESS sets of the left-hand side (lhs) references in the loop with
respect to a processor p. The RIS represents the largest subset of the iteration space for
which p does some work in every iteration. The RIS is in the global iteration space GI. If
used directly, an index translation r7, is required at every iteration to transform s(i) from
the global index space GN into the local space LN of p: DO (i E RIS) A(rp(s(i)))=...
This can be costly if IRISI is large. A better approach is to obtain LRIS = Ap(RIS), which
is in the local iteration space LI of p. The loop becomes DO (i E LRIS) A(s(i))=...
and is more efficient since IRISI r7, operations are saved at run time.

If the ACCESS set of a lhs in the loop is a proper subset of the RIS, then the corre-
sponding statement must be masked [81 to make its execution conditional. Optimizations
such as mask merging (consecutive assignment statements sharing the same mask) and
mask extraction (multiple occurrences of a mask coalesced and extracted out of a loop) are
performed automatically by the compiler. Details about the conditions and algorithms to
compute RIS, LRIS, and masks can be found in [13].

3.3 Communication Determination

To find the necessary communication among processors, the compiler computes several
communication sets for each right-hand side (rhs) reference. Details of these sets and the
algorithms to calculate them are found in [13, 14]. A brief description follows.

RECEIVE and SEND Global Iteration Sets The first communication sets computed
are the RECEIVE and SEND sets, both in the global iteration space GI. For an assignment
statement S with a lhs reference L and a rhs reference R, RECEIVE(R,p) is the set of
global iterations for which p owns L but not R. Thus, p must receive this data via
interprocessor communication to execute S. Similarly, SEND(R,p) is the set of global
iterations for which p owns R but not L, and hence must send the data to the owner
processor of L for it to execute S. Thus, we have:

RECEIVE(R,p) = ACCESS(L,p) - ITERIMAGE(R,p)

SEND(R,p) = ACCESS(R,p) - ITERIMAGE(L,p)

IN and OUT Local Index Sets To generate communication, the array sections to be
communicated must be determined. The RECEIVE and SEND sets are translated from
the global iteration space GI to the local index space LN of each processor p, obtaining
the IN and OUT sets, respectively. First the subscript function s(i) is applied to translate
the sets from global iterations GI to global indices GN, and then the index translation
function r, is used to take the sets from global indices GN to local indices LN of p:

IN(R,p) = Tr(s(REcEtvE(R,p)))
OUT(R,p) = r,(s(SEND(R,p)))

I
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PARADIGM Code Example It is also of interest to examine the actual code gener-
ated. Figure 6 shows a serial program for a two-dimensional Jacobi iteration. Figure 7
shows the resulting optimized node program supporting a variable number of iPSC pro-
cessors with a minimum configuration of four nodes. Notice the use of symbolic block
sizes (highlighted) whose values are computed at run time.

program jacobi if (my$p(2) le. m$nurn(2)-2) then

paramneter (np2 = 500, ncycles = 10) call crecv(OB(1,mSbB2+l),4*mSbBl)

real A(np2, np2), B(np2, np2) end if

npl np2-1 if (mySp(2) le. m$num(2)-2) then

do k 1 1, ncycles call caend(1,B(1,m$bA2),4*m~bBl,m$to(0,l),1)
do j = 2, npl end if

do i = 2, npl if (my$p(2) .ge. 1) then
A(i, j) = (B(i-1, j) + B(i+l, j) call crecv(l,B(l,),4A*m$bB1)

+ B(i, j-1) + B(i, j+l)) / 4 end if

end do if (my$p(l) ge. 1) then

end do m$inc = f$pack2(B,4,0,251,0,251,1,1,1,1,mSbB2,l,m$buf)

do j = 2, npl call csend(2,mSbuf,m$inc,m$to(-1,O),l)

do i = 2, npl end if
B(i, j) = A(i, j) if (mySp(l) .Ae. mSnumn(1)-2) then

end do call crecv(2,m$buf,1000)
end do m$inc = funpack2(B,4,0,251,0,251,mSbBl+l,mSbA1+l,

end do 1,1,mSbB2,1,mn$buf)

end end if
if (mySp(1) le. m$numn(1)-2) then

Figure 6: Serial Version of Jacobi m$inc = f[pack2(B,4,0,251,0,251,mSbAl,rm$bBl,

1,1,mSbB2,1,mnbuf)

program jacobi call csond(3,mSbuf,mSinc,mSto(1,0),1)

character m$buf(1000) end if

integer my$p(2), mSbAl, mnSbA2, mSbB1, mSbB2 if (my$p(l) .ge. 1) then

integer m$numdim, rm$numn(2), m$to(-1:1,-l:1), m$inc call crecv(s,m$buf,1000)

real A(250,250), B(0:251,0:251) m$inc = fSunpack2(B,4,0,251,0,251,0,0,1,1,m$bB2,1,m$buf)

mnSnumdim = 2 {number of mesh dimensionsj} end if

mr$nun(1) = 2 {minimum mesh configuration} doj = mnax(2-mSbA2*mySp(2), 1),

mSnum(2) = 2 1hin(499-mSbA2*my$p(2), mSbA2)

call m$getnum(m$nunm,nunmodesO) do i = max(2-mSbAl*my$p(1), 1),

call m$gridinit(m$numdim,m$num,nunmodes0,1) min(499-rmnbAl*ny$p(1), mSbAl)

call m$gridcoord(mynodeO,my$p) A(i, j) = (B(i-1, j) + B(i+l, j) + B(i, j-1)

mSto(-1,0) = mSgridrel2(my$p,-1,0) + B(i, j+l)) / 4

mnSto(0,-1) = mSgridrel2(rnySp,0,-1) end do

m$to(0,1) = m$gridrel2(my$p,0,1) end do

mSto(1,0) = m$gridre12(my$p,1,0) doj = max(2-mSbB2*mny$p(2), 1),
mn~bA1 = ceil(float(500) /mr$num(1)) rnin(499-mn~bB2*my$p(2), m~bB2)

mn~bA2 = ceil(float(500) / m~numn(2)) do i = mnax(2-mn~bB1*my~p(l), 1)),

mtbB1 = ceil(float(500) / ru$num(1)) min(499-mnbBl*my$p(1), mtbB1)

mSbB2 = ceil(float(500) / mn$num(2)) B(i, j) = A(i, j)

do k = 1,10 end do

if (my$p(2) .ge. 1) then end do

call csend(0,B(1,1),4*mSbBl,m$to(0,-1),l) end do

end if end

Figure 7: Jacobi for Variable Number of Processors, with a Minimum 2 x 2 Configuration

4 Conclusions
The purpose of this work is to provide a uniform and efficient way of describing distributed
data or computation. The main advantages of the PTD over many other existing rep-
resentations can be summarized as follows: (1) a single PTD describes all partitions of
a region regardless of the shape and size of each partition; (2) a wide range regions of
are possible with arbitrary numbers of dimensions, arbitrary boundary angles (not just
multiples of 450), and nonconvex shapes; (3) the PTD supports symbolic set functions
and domain transformations, essential parallelizing compiler for distributed memory; and
(4) symbolic block sizes make it possible to compile for a variable number of processors.
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Abstract: We present Resource Spackling, a framework for integrating register alloca-
tion and instruction scheduling that is based on a Measure and Reduce paradigm. The
technique measures the resource requirements of a program and uses the measurements to
distribute code for better resource allocation. The technique is applicable to the allocation
of different types of resources. A program's resource requirements for both register and
functional unit resources are first measured using a unified representation. These mea-
surements are used to find areas where resources are either under or over utilized, called
resource holes and excessive sets, respectively. Conditions are determined for increasing
resource utilization in the resource holes. These conditions are applicable to both local
and global code motion.

1 Introduction
A variety of local and global scheduling techniques have been developed for exploiting
instruction level parallelism. The degree of parallelism in the schedule is affected by reg-
ister allocation, which is applied either before or after scheduling. Instruction scheduling,
which allocates functional units, and register allocation have competing goals. The goal
of register allocation is to avoid spills, which tends to result in a few values being held in
registers for a long time. The goal of instruction scheduling is to keep all functional units
busy, typically requiring a large number of values to be available for future operations.
Thus an improvement in the availability of one resource may reduce the availability of
the other resource, and possibly result in poor overall quality of generated code.

We present a framework for integrating instruction scheduling and register allocation
that is based upon a Measure and Reduce paradigm. Resource requirements are measured
and better resource utilization in both local and global scheduling is achieved by moving
instructions from areas with over utilized resources to areas with under utilized resources.
Integrated allocation of registers and functional units is achieved by allowing simultaneous
consideration of the demand for both types of resources during scheduling.

Previous work on local schedulers has treated register allocation and instruction schedul-
ing as separate phases [BEH91, GoH88, Pin93, SwB90]. In addition, the instruction
scheduling phases have been based on list scheduling. The separation of phases and use
of list scheduling limit the direct assessment of the impact of register and functional unit

t Partially supported by National Science Foundation Presidential Young Investigator Award CCR-
9157371 and Grant CCR-91090809 to the University of Pittsburgh
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allocation decisions on the availability of other resources and hence on the length of the
schedule. Recent work has incorporated parallel live range information into register al-
location, but still separates register allocation from instruction scheduling [Pin93]. The
approach we present unifies the allocation of registers and functional units in a single
phase and is able to consider the impact of an allocation decision on other instructions.

Work on global scheduling has identified blocks to which an instruction can be moved
[AiN88, BeR91, Fis8l, GuS90, SHL92] by concentrating on functional unit constraints
[EbN89, MGS92] in carrying out the code motion. Only recently has work on global
scheduling begun to consider register allocation as a part of the problem [MoE92, NiG931.
Although Moon and Ebcioglu[MoE92] added register constraints, they are only able to
exploit unused registers at the beginning or end of a basic block. Our framework allows
all idle resources in a basic block to be identified, regardless of when they are idle, and
exploited when instructions are available. The framework can be used in conjunction with
commonly used methods for performing code motion, such as Trace Scheduling[Fis81],
Percolation Scheduling[AiN88], and Region Scheduling(GuS90].

The Resource Spackling framework computes resource requirements for a program.
A unified representation of functional unit and register uses is constructed to identify
all resource uses that can temporally share the same instance of a resource. Using this
representation we compute the maximum number of each resource required at each point
in the program. Maximum functional unit requirements correspond to maximum par-
allelism, while maximum register requirements correspond to the maximum number of
simultaneously live values. The resource requirements measures are then used to identify
two sets: excessive sc +, which are sets of instructions that may be executed concurrently
but require more resources than are available, and resource holes, which are areas where a
resource is underutilized. Properties are identified for holes and resources, which indicate
how instructions can be inserted into the holes to increase resource utilization. Moving
an instruction is only beneficial if it can be placed in a hole where all necessary resources
are available. The technique is called Resource Spackling due to the process of identifying
and filling resource holes.
2 Determining Resource Requirements using Allocation Chains
This section summarizes the measurement of resource requirements used to locate ex-
cessive sets and resource holes [BGS93]. Measurement of resource demands depends on
the usage characteristics of the resource. The two major types of resources considered in
this work, functional units and registers, have different use properties. If a resource is in
use only during the execution of an instruction, we say it is a non-spanning resource. If
the use of a resource begins during the execution of one instruction and ends during the
execution of a subsequent instruction we say the resource is spanning. The instruction
that begins the use is called the defining instruction and the instruction that ends the
use is called the killing instruction. Functional units are non-spanning resources, while
registers are spanning resources.

The resource usage information is represented as a ReuseR DAG, and is computed from
the program DAG. Functional unit and register Reuse DAGs are denoted as ReuseFu
DAG and Reuseteg DAG respectively. The term Reuse comes from the property that for
any edge (A, B) in the ReuseR DAG, where A and B are nodes representing instructions
in the program DAG, B can always safely reuse A's instance of R.

The program DAG in Figure l(b) is a ReuseFu DAG. A corresponding ReuseR,
DAG is shown in Figure 1(c). The selection of which use kills a value must be performed
carefully so that the number of simultaneously live values is maximized. To maximize the
number of simultaneously live values for the ReuseRCg DAG in Figure l(c) the following
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A: load a
B: b 2*a C D
C: c a +1 A C D E

D: d a-3 E FeBcF
E: ec dG
F: f=c-d BG: g=e/fH

H: h= g + 5

I: i h* 2
J: 3 h +4 K
K: k =i/ K

L: 1 =b + k

(a) Basic block of code (b) Functional Unit Reuse DAG (c) Register Reuse DAG
Figure 1: Basic block and Reuse DAGs

selections have been made: B kills A, I kills H, and E kills both C and D.
Resource requirements for resource R are measured from the partial order represented

by the ReuseR DAG by finding sets of instructions that can reuse the same resource
instance, called allocation chains. Formally, a chain is a subset of elements in a partial
order such that all elements in the chain are related, i.e., ordered. A decomposition of a
partial order into chains is a set of chains such that all elements in the partial order are in
exactly one of the chains. A decomposition is minimal if there is no other decomposition
of the partial order that has fewer chains. Since the allocation chains are found on the
ReuseR DAG, all instructions on one allocation chain can be assigned the same instance of
the resource. Each of thesetsofnodes {A, C, E, G, H, I, K, L}, {D, F, J}, and {B}
is a chain, and this set of chains forms a minimal decomposition of the DAG. Similarly,
the ReuseReg DAG can be minimally decomposed into the chains {A, B, L}, {C, F, G,
H, I, KI, {D}, and {E, J}.

The maximum number of independent elements in a partial order is equal to the num-
ber of chains in a minimal decomposition[Dil5O]. Since the partial order is constructed
from resource reuse information, the number of chains in a minimal decomposition rep-
resents the maximum number of instructions that can execute concurrently and simul-
taneously live values for ReuseFu DAGs and ReuseR,9 DAGs respectively. Thus, the
block in Figure 1(a) requires three functional units and four registers to exploit all of
its parallelism. A minimum decomposition of a partial order can be found by using a
straightfor vard transformation to a bipartite graph matching problem[FoF65].

3 Resource Holes
Resource holes and their properties are located by analyzing the allocation chains for the
resource of interest. Given a hole h, the size of h, sizeh, is the number of cycles for which
the hole's resource is available for allocation. EATh, the earliest available time of hole
h, is the earliest time that the resource can be allocated to an instruction. LATh, the
latest available time of hole h, is the lastest time that the resource can be allocated to an
instruction. These properties are determined by the time of execution of the instructions
surrounding the holes. The scheduling of instruction i in the program DAG is limited
by the precedence constraints to a time frame in which it can execute. The time frame
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is delimited by the instruction's earliest start time, EST., and latest finish time, LFT,.
Let ri denote the execution time for instruction i. Then i's latest start time, LST,, is
given by LSTi = LFT, - ri. The slack time for scheduling instruction i is given by
slacki = LST, - EST,. The identification of resource holes is performed by examining
the instructions' ESTs and LFTs on each allocation chain and recording the information
for each hole.

Resource holes can occur in two different situations. The first, a free hole, occurs when
an instance of a resource is unused in a section of a basic block. Free holes can occur
because no instructions from an allocation chain can execute in this section. They can
also occur at the beginning or end of a block before maximum demands are encountered.

Definition 1 If two consecutive instructions, ij and ij+l, on an allocation chain cannot
be executed consecutively, i.e., LFT.j < ESTi,+,, then there is a free hole, h, such that
EAT, = LFT,,, LATh = EST,,+,, and sizeh = LATh - EATh.

We refer to the pair (EATh, LATh) as the range of hole h. As an example, assume the
DAG in Figure l(b) and the chains mentioned earlier, and that all instructions require
unit time. The DAG requires eight time units to execute. A free functional unit hole
exists between instructions F and 3, with size 2 and range (3, 5). Thus, two instructions
could be allocated to that allocation chain between F and J.

The second type of hole, a slack hole, occurs when resources that are already allocated
may be temporally shared. If slacki = 0 then i is on a critical path and has no flexibility
for scheduling without increasing the execution time of the basic block. If i is not on a
critical path then there is some flexibility on when it can be scheduled. Thus, its resources
may be available for allocation to another instruction.

Definition 2 If there is a set of consecutive instructions I = {il, i2, ... , i.} and a constant
s such that V slacki, = s, there is a slack hole, h, such that EATh = EST,,, LATh =

i,EI
LFTi., and sizeh = s.

In Figure l(b) there is a slack functional unit hole involving instructions A, B, and the
end of the block. B has a slack time of 5, and a range of (1, 7). Thus, five instructions
could be allocated to B's allocation chain. Any number of these five instructions can be
allocated between A and B, with the remainder after B.

Instructions are inserted in holes to avoid increasing the critical path length. Thus
a hole must be at least as large as the instructions being inserted in it. There are cases
when additional instructions must be placed in the hole to manage the use of registers. In
a register slack hole there are instructions which are already using the register. Spill code
must be placed in the hole around the inserted instructions to free this register for the
inserted instructiors. Additionally, the final value computed by the inserted instructions
must sometimes be spilled. The following theorem formalizes the conditions under which
a set of instructions can be inserted in a hole. The values Tstore and TIoad are the number
of cycles required to store and load a value respectively.
Theorem 1 Let I be a set of instructions, with execution time r7, that requires resource
R. During insertion of I in h there will not be any increase in the length of the critical
path of the basic block containing h, due to unavailability of resource R, if h satisfies one
of the following conditions.

1. R is a non-spanning resource or R is a spanning resource and inserting I in h
requires no spills, and sizeh > "rl.

2. R is a spanning resource, and inserting I in h requires only the final value computed
by I to be spilled and sizeh Ž rZ + ,rt,..
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3. R is a spanning resource, and inserting IT in h requires only a value computed by
instructions already in h to be spilled, and sizeh Ž! rZ + T,1,, +- tood.

4. R is a spanning resource, inserting I in h requires both a value computed by
instructions already in h and the final value computed by I to be spilled and
sizeh Ž TI + 2

T-tore .,+ "load.

Proof: Since the cases are mutually exclusive, each case is proven in turn.
Case 1 When no spilling is required the hole must be at least as big as the inserted

instructions, whose size is Tr, giving sizeh > TI.
Case 2 When the final value computed by the inserted instructions must be spilled, the

hole must be at least large enough to hold both the inserted instructions and the
store instruction, giving sizeh Ž_ 7I + Tto,.e.

Case 3 When a value computed by instructions already in the hole must be spilled, the
value must be stored before the inserted instructions and then reloaded following the
inserted instructions. Thus the hole must be at least large enough to hold a store
and a load in addition to the inserted instructions, giving sizeh Ž TI + T8to1 e + Tioad.

Case 4 This case is a combination of cases 2 and 3. Summing the additional instructions
that must be inserted with I gives sizeh > TI + 2

Tstore + Tioad.D

In addition to the instructions chosen for insertion in the hole, I must also contain
any load instructions for any values needed by I which are not already in registers.

In some situations, instructions must be inserted even when there are no holes available
for insertion. In these situations the scheduler creates pseudo holes in the block for each
resource needed, resulting in an increase in the critical path length. This process of forcing
holes into the block, increasing its critical path length, is called wedged insertion.

4 Local Scheduling and Register Allocation
In the Measure and Reduce paradigm, local resource allocation is performed by introducing
sequentiality between instructions whose resource demands exceed availablc resources.
The sequencing places two instructions, which were on separate allocation chains, onto
a single allocation chain. The result is that the two instructions are allocated a single
instance of the resource and share it temporally. Sequencing must be performed when the
number of allocation chains is greater than the number of resource instances available.

Definition 3 An excessive set ER fAj '12, ...I.} for resource R is a set of instructions
such that

1. all instructions are independent, i.e., V i V ancestors(j) U descendants(j), and
iJEER

2. there are excessive requirements, i.e., m > JRI.

Note that condition 1 implies that each instruction is on a separate allocation chain.
For every instruction i, the allocation chains can be used to find all resources for

which i is a member of at least one excessive set of the resource. Sequentialization is then
performed by selecting i to be the instruction with excessive uses that has the greatest
slack time to be moved to holes. The slack time is used to prioritize the instructions
since it indicates flexibility in finding a place to move the instruction. If there is a set of
overlapping holes for all resources that i excessively uses within i's execution range, then
i can be inserted in those holes without increasing the critical path length.

If there is no set of holes within i's execution range, then an increase in the critical
path length is unavoidable. There are two options. First, there may be a set of holes
close to i's execution range to which i can be moved. Second, wedged insertion can be
performed to create a set of holes for i's excessive uses. The option that minimizes the
increase to the critical path length should be selected. The outline for an algorithm that
reduces a block by finding or creating holes is given in Figure 2.
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Procedure reduce-block( block )
{ While block has excessive sets do
{I - all instructions in all excessive sets for all resources;

select i E 2 with maximum slack,;
1Z = the set of resources that i excessively uses;
if (3 V hole h, whose ranges overlap with each other and

i's execution range)
holes = this set of holes;

else
{ close = the set of holes h, s.t. r E 1 whose ranges overlap

and are closest to i's execution range;
wedge the set of holes created by wedged insertion for R?;
holes = the set, either close or wedge that minimally increases

the critical path length of block; }
V place i in h, by adding sequentialization edges;

hEholes
if ( excessive spanning uses remain )

spill uses between the excessive set and the hole containing i;
remove i from excessive set information; }

Figure 2: Function reduce-block()

As an example, consider the DAG in Figure 3(a). First assume that the target archi-
tecture has at least five registers but only three functional units. Then the nodes C, D, F,
G, H, and I are all members of at least one functional unit excessive set. Nodes H and I
each have a slack time of one. There is a functional unit slack hole around each of H and
I, so H's hole overlaps with I's execution range. Figure 3(b) shows the result of inserting
I in H's hole. Dashed arrows indicate sequentializing dependences, i.e., dependences due
to reuse of resources rather than data values.

Now assume that only four registers are available and G is selected to kill both C's and
D's values and I is selected to kill E's value. Then nodes C, D, F, H, and I are in functional
unit and register excessive sets. Node H has slack time but there are no register holes
in its execution range. Therefore the algorithm must increase the critical path length.
There are a functional unit and a register hole available after G executes since it kills two
values and only needs one register for itself. Inserting H in the hole following G would
increase the critical path by one instruction. Wedged insertion would increase the critical
path length more because the pseudo hole must be large enough to spill and reload a
value. Therefore the algorithm chooses the hole close to H instead of performing wedged
insertion. The resulting DAG is shown in Figure 3(c).

Although the creation of some live values may be delayed by sequencing, the instruc-
tions that compute the live values may need input values. These input values remain live
from where they are computed to where the excessive instructions are moved. In Figure
3(c) the value computed by H was delayed until there was a register available. However,
E's value remains live until after both H and I execute. In this example it is impossible
to reduce the register requirements below four using just sequentialization. When such a
situation occurs sequentialization must be combined with register spilling. There are two
options for selecting what values to spill. Either the values in the excessive set may be
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Figure 3: Local reductions of resource requirements

computed and spilled, or the input values may be spilled. The option selected depends on
what holes are available. Computing and spilling the excess values prior to the excessive
set requires additional functional unit and register holes, while spilling the input values
requires additional functional unit holes to where the values are moved.

Continuing with the above example, assume the same killing ins*ructions arid that
the target architecture has three registers and two functional units. As before, the nodes
C, D, F, H, and I are in an excessive set and only instructions H and I have slack time.
Free functional unit and register holes become available after G executes, and another set
of free functional unit and register holes become available after J executes. H and I are
placed in the free holes. However, the sequentialization would still leave the excessive
set {C, D, E, F}. Thus a spill must be performed. To minimize the number of spfils, the
algorithm spills the input value, E. The resulting DAG is shown in Figure 3(d).

5 Global Scheduling and Register Allocation
The goal of global scheduling is to move instructions from a source block to a destination
block to decrease the execution time of the source block by reducing the critical path length
in the source block and avoiding increasing the critical path length in the destination
block. The instructions moved are called fill instructions since they are inserted in holes
in the destination block. Fill instructions may be found in blocks with the same control
dependences and in blocks with different control conditions when the architecture supports
speculative execution [SHL921 or guarded execution (HsD86], or when code duplication is
performed.

Next we describe how existing global code motion techniques [AiN88, Fis8l, GuS90]
can use the framework to unify functional unit and register allocation, and determine
which code motions are beneficial. To realize a benefit, all instructions that are at one
end of a DAG and are on a critical path must be moved together; otherwise the critical
path length will not be reduced. We call such sets of instructions critical sets. Consider
removing nodes from the top of the DAG in Figure 1(b). The first critical set is {A}.
When A is moved the length of the DAG is reduced by the execution time of A. Then the
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Function fill( dest, source )
{ reduce - 0;

While dest has holes do
{ cs = next set of critical instructions from source;

Foreach instruction i E cs
{ compute EST, based on I's dependences in the destination block

LFT, = LFT of the last instruction in the destination block }
/* find overlapping resource holes */

Foreach instruction i E cs, in decreasing order of EST,
{ Forall resources r required by i

{ select holes h, such that they overlap with the other holes
selected and with i

if no such holes exist
{ undo all moves from the current critical set;

return reduce; }
Insert i into h's allocation chain; }

Update the hole description information; }
reduce = reduce + min ( r );}

t E cs
return reduce;

}

Figure 4: Function fill()

next critical set is {C, D). Note that B is not in the critical set since moving it would not
affect the length of the critical path.

If not all instructions in a critical set can be moved, none are moved. The allocation
of resources is similar to that in local schedulers. Overlapping resource holes are found
for all resources required by each instruction. However, the holes must be within the
instruction's execution range, and wedged insertion is not performed, since the goal is
to avoid increases to the critical path length of the destination block. An algorithm for
performing global code motion in this manner is given in Figure 4.

Consider the problem of moving the instructions from Block 2 to Block 1 in Figure
5(a). Assume that there are three functional units and four registers available. The
first critical set consists of instructions M1 and M2. Instruction M2 can be inserted in the
functional unit hole following F and the register hole following D since the holes overlap.
M2's value must be spilled since the register hole is not available to the end of the DAG.
M1 can be inserted in the functional unit hole following B and the register hole following G,
which results from killing F. The value computed by M1 need not be spilled. The resulting
DAGs are shown in Figure 5(b). Next M3 and M4 are moved up. Since M4 is selected to
kill both Ml and M2 it can use the same functional unit and register as M2. Instruction
M3 can use Ml's functional unit, and it will also take Ml's register, forcing M1 to use B's
register. B's value must now be spilled around the inserted instructions and M3's value is
spilled before B's value is reloaded. The resulting DAGs are shown in Figure 5(c).

Traditional global schedulers, based on list scheduling, are able to identify functional
unit holes. However, since the scheduler is separate from the register allocator, it does
not know if there are registers available for the instructions that it moves up. Similarly,
these schedulers cannot recognize when instructions from other blocks should be moved
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Figure 5: Example of global code motion

up above instructions in the block with slack time, since these schedulers usually schedule
all instructions in the current block first. Resource Spackling can move instructions from
other blocks above instructions with slack time in the current block when overlapping
resource holes are available.

Several problems concerning the insertion of fill instructions must be considered. The
code motion algorithms must determine if the critical path length of the source block
is decreased when loads of moved values are inserted in it. The algorithms mu' also
consider the impact of code duplication on the critical paths.

6 Experimentation and Concluding Remarks
We have implemented Resource Spackling using our experimental compiler tool, pdgcc.
Pdgcc is a C compiler front-end which performs dataflow and dependence analysis and
generates intermediate code in the form of PDGs. Both local reductions and global code
motions have been implemented. The target architecture of the experiments is a VLIW
architecture that supports speculative execution. Two configurations of different numbers
of functional units and registers are used. In the target architecture all instructions
execute in one cycle, except for memory access instructions which execute in two cycles.
Although the framework stpports all code motions for conditionals, the experiments are
based on code motions for speculative execution of instructions.

The procedures used consist of six routines from the C version of the linpack bench-
mark. Execution profile information was collected for each region. The resulting execution
times, after local and global Resource Spackling has been performed, are determined by
multiplying the execution times of each region by the number of cycles required to execute
the region.
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VLIW machine 1 VLIW machine 2
4 FUs 8 Regs 8 FUs 16 Regs

routine local global local global
matgen 2.48 2.64 2.48 2.73

dgcal 1.96 2.12 2.01 2.18
daxpy 2.24 2.35 4.09 4.40
ddot 2.12 2.12 2.12 2.12
idamax 3.01 3.01 3.01 3.01

epslon 2.17 2.38 2.17 2.38

Table 1: Experimental results

The results for two target architectures are shown in Table 1. The columns labeled
local give the speedup over a 1 wide VLIW architecture when only local scheduling using
reductions are performed. The columns labeled global give the speedups when both local
and global scheduling are performed. The size of the critical path reductions ranged from
I to 6 cycles and averaged 2.6. The number of instructions moved ranged from 1 to 8 and
also averaged 2.6.

The numbers show that Resource Spackling is able to exploit the parallelism available
in the benchmarks within the constraints of the architecture's resources. Further, in all
but two cases, ddot and idamax, global code motion using Resource Spackling made ad-
ditional improvements. Upon examining the routines and their profile information, it was
discovered that instructions were moved during global code motion, but that neither their
source or destination regions were executed during the profiling runs. The routines ddot,
idamax, and epslon did not show any improvement when run on the 8 wide architec-
ture because the resource requirement measurements showed that the 4 wide architecture
provided sufficient resources.

Resource Spackling is a framework which is general enough to allow common archi-
tectural features to be incorporated. Separate ReuseR DAGs can be built for each type
of resource provide, e.g., integer and floating point register files, and integer functional
units and separate floating point adders and multipliers. Pipelines, resource demands
that can be satisfied by several types of resources, and implicit resource demands also can
be modeled in Resource Spackling[BGS94].
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Abstract: Predicated and speculative execution have been separately proposed in the
past to increase the amount of instruction-level parallelism (ILP) present in a program.
However, little work has been done to combine the merits of both. Excessive speculative
execution can negatively affect the performance, especially when unguided by suitable
profiler estimates. Similarly, predicated execution always results in unnecessary execu-
tion of operations present in the untaken branch. Conventional techniques use expensive
profiler analysis to reduce the overhead costs of predicated execution. In this paper we
first study the effects of individual as well as combined effects of speculative/predicated
execution features. We then present an algorithm which attempts to combine the merits
of the two. We show that for programs with unpredictable branch outcomes, the proposed
technique improves the program performance as compared to previous techniques. We
also show that separating the two (predication and speculation) results in less efficient
schedules.
Keyword Codes: C.1.3, D.1.3, D.3.m
Keywords: instruction level parallelism, program dependence graph, region scheduling,
predicated execution, speculative execution

1 Introduction

Architectures such as horizontal microengines, multiple RISC architectures, Superscalar
and VLIW machines benefit from the utilization of fine-grain or instruction level paral-
lelism (ILP). The presence of conditional branches in the code however limit the extent
of ILP that can be extracted at a basic block level. Since many application programs are
branch intensive and basic blocks do not contain many operations, the need to extend
the scheduling phase beyond basic blocks is important in order to achieve better perfor-
mance [4]. Techniques have been adopted by conventional compilers to parallelize the
branch code. Two widely known techniques which attempt to alleviate this problem are
predicated execution and speculative execution.

Predicated execution is presented as a technique to handle conditionals using basic
block techniques. First, a branch condition is replaced with a statement which stores the
result of the test in a predicate register, P. An instruction in the true branch such as
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Figure 1: (a) Original data dependence graph.(b) After renaming f = c- I (c) Dependence
graph after renaming and forward substituting g = f + e and a = g + e.

a = b + c is replaced by a predicated instruction a = b + c if P-t which specifies that
the operation will actually be completed only if the predicate P is true. An instruction
on the false branch such as d=e*f would be replaced by d=e*f if Pf. Mahlke et al.
propose a parallel architecture which supports predicated execution in which the predicate
operations may execute concurrently with the statement which assigns the predicate [6, 7].
This is possible because the operation is executed regardless of the value of the predicate,
but is only allowed to change the assigned value if the predicate value is satisfied. Since
the stores are performed in a later part of the execution cycle than the computation of
the value, this is feasible. Thus, code containing branches is converted into straight-line,
branch-free code. Warter et al. [5] later propose a reverse if-conversion process to convert
the predicated representation back to the control flow graph representation in order to
facilitate architectures without predicated execution support.

Speculative execution refers to the execution of operations before it is known that
they will be useful. It is similar to predicated execution except that instead of allowing
the operation to be performed at the same time step as the predicate, the operation can
be performed many time steps before its usefulness is known. Renaming and forward
substitution are used by Ebcioglu et al [8] and Nicolau et al [10] to move operations
past predicates. The length of a dependence cycle containing a control dependence is
reduced when the true dependencies in the cycle are collapsed by forward substitution.
Renaming is a technique which replaces the original operation by two new operations, one
of which is a copy operation while the other is the original operation but whose result is
assigned to another variable. The copy operation copies the value from this new variable
to the original variable. Since the new variable is used only in the copy operation, the
assignment is free to move out of the predicate. Figure 1(b) shows how renaming is used
to move the operation f = c - 1 past the predicate. A new variable f' is created and is
assigned the result of the expression c - 1. In order to preserve the original semantics of
the program, the value assigned to f' is copied back into f. Since f' is used only by the
copy operation, it can move past the predicate. Figure 1(c) shows the resultant graph
formed after renaming and forward substituting g = f + e and a = g + e.

Various factors effect the desirability of using either predicated or speculative execu-
tion. If the code is highly constrained by data dependencies, predicated execution may
be of little benefit. Speculative execution may perform better. In Figure 1(a), predicated
execution would allow operations 3 and 4 to execute simultaneously which would have the
effect of reducing the dependency cycle to five. However, Figure 1(c) shows that the cyclic
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dependency can be reduced to 4 by performing speculative execution only. Similarly, for
branch intensive programs, predicated execution may perform better than speculative ex-
ecution as it supports multi-way branching. Operations dependent on different predicates
can be executed simultaneously, provided the parallel instruction can accommodate them.
This provides more parallelism than speculative execution.

Both the techniques have their drawbacks as well. Excessive speculative or predicated
operations may result in the generation of inefficient code. Speculated operations con-
suming extra resources may degrade the initial schedule. Similarly, predicated execution
always examines operations from both the branches irrespective of which branch is finally
taken. This may worsen the performance, if the predicted operations from the branch not
taken consume extra cycles after the predicate has been computed.

The issue therefore becomes, how can the merits of both be combined in order to
improve the efficiency of the generated code and if so, to what extent should they be
combined? This paper attempts to answer these questions. In Figure 1(c), the cyclic
dependency (4) after performing speculative execution can be further reduced to (3) with
predicated execution (allowing 3 and 4 to execute concurrently).

The rest of the paper is organized as follows. Section 1.1 explains previous work done
in this direction. Section 2 explains our model and the set of transformations we used
for our comparison study. In this section, we also compare our combining algorithm with
hyperblock scheduling [6], another relatively new technique which attempts to alleviate
this problem. Finally, Section 3 shows the results obtained from the test cases.

1.1 Previous Work

An early attempt to speculatively execute predicated operations was done by the Impact
Group [6]. They use hyperblocks to control the overhead which is inherent when all oper-
ations (which are performed conditionally) are predicated. Profiler estimates are used to
analyze the various conditional paths and ignore blocks with low frequency. All condition-
ally executed operations within the hyperblock are initially predicated. The predicated
operations are then considered for speculative execution. All the predicated operations
which could not be speculated, either due to resource or dependence conflicts, remain
as predicated operations. Global transformations are then performed on the resultant
hyperblocks to generate parallel schedules. The performance of the technique depends
on two main factors. First, the amount of regular parallelism a program contains i.e.,
how predictable and uniform are its control structures. Second, the overhead costs of
compensation code (for the less frequently executed blocks) and other side-effects due to
predicated exeuction, which may negatively affec÷ the performance.

Another global scheduling technique which attempts to combine the merits of the two
techniques is region scheduling proposed by Gupta et al. [111. The extent of combining
however is limited and less aggressive than hyperblock scheduling. A condition P, is
merged (predicated) with its true and false regions' R, and Rk respectively, only, if
both Rj and Rh contain sufficiently less parallelism to fully utilize the system resources.
Precisely, the transformation is performed if bj + bk 5 bideal; bidea is the number of
function units available in the target architecture. The parallelism 6i present in region Ri
is measured as Oi/Ti, where Oi is the total number of operations present in the region
and T1 is the execution time of the longest dependency chain.

'Regions represent independent schedulable units and summarize all statements having the same
control condition. More details can be found in subsection 2.1.
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Most of the earlier work aimed at increasing the efficacy of using the speculative execu-
tion feature. Several hardware and software mechanisms have been proposed. Boosting,
a hardware mechanism to support speculative execution, was proposed by Smith et al
[2]. The work describes a hardware feature to support delayed and accurate reporting of
exceptions caused by speculatively executed instructions. However, their work is based on
a trace-driven simulation which does not support predicated execution features. More-
over, trace scheduling possesses serious limitations as shown in [11]. Bernestein et al
[3] present an algorithm to selectively speculate instructions. Speculation is performed
after non-speculated operations (if any) have been considered for possible code motion.
The work assumes a machine with low issue rates (2-3). Their model does not support
code duplication and provides limited speculative execution (one branch only). However,
neither of the techniques support predicated execution.

2 Our Approach

We propose a technique which attempts to combine the merits of both the predicated and
speculative execution features. Predicated execution is used to simultaneously execute
control dependent operations with the computation of the predicate. Operations which
can not execute simultaneously with the predicate are not predicated. Subsequent pred-
ication is unnecessary as the outcome of the branch condition will be known then. This
avoids the consumption of extra resources needed to execute operations in the untaken
branch. Let C be the set of all operations which are performed conditionally. Let C. be
the set of all operations which can be executed speculatively (if such execution will not
increase the execution time of the non-taken branch). Let C. = C - C, be the other
operations which cannot be speculatively executed, either because of data dependence or
because of resource conflicts. The operations of C. can be executed (predicated) con-
currently with the operation on which they are control dependent, can be skipped via
branching, or can be executed (taken branch).

The technique treats the jump instruction as a predicated instruction and allows the
possibility for its concurrent execution along with the predicate controlling its execution.
We assume that the writback stage of program counter is guarded for predicated jump
instructions. In case, the predicated jump instruction is nullified, the program counter
is assumed to point to the next sequential address in memory. We perform this partial
combining only when the cost of inserting this predicated jump instruction is still less
than the cost to fully predicate all the conditional operations or to strictly disallow control
dependent operations to execute simultaneously. The combining technique is performed
only if both of the above two conditions is satisfied. More details about the technique are
described in section 2.2.

We implemented the above technique in our enhanced version of the region model.
The program dependence graph (PDG) [9] is used as a framework for performing our
parallelizing transformations. The purpose of this study is two-fold. First, to show that
predicated or speculative execution by itself cannot fully exploit the global ILP available
in a program. Second, to show that the combining technique we propose, is better than
previous techniques which attempted to combine the merits of both the predicated and
speculative execution feature.
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Figure 2: Code Motion Possibilities (a) Program Fragment (b) PDG Equivalent (c) Code
Motion Possibilities

2.1 Our Transformations

We used our enhanced version of the region scheduler [1] as our model for performing all
the parallelizing transformations. The transformations include pipelining, loop transfor-
mations and code motion transformations. Pipelining is used to overlap (simultaneously
execute) operations present in different iterations of a loop body. Loop transformations
peels one or more iterations from the loop body to a region just before/after the loop.
This transformation is used to increase the parallelism present outside the loop. In our
model, loop transformations are performed (if necessary) after pipelining to peel the iter-
ations from the transformed loop body. Code motion transformations are then employed
to redistribute the parallelism among regions. Figure 2(c) shows the various code mo-
tion transformations performed in our model. Figure 2(b) shows the PDG equivalent of
a program fragment in Figure 2(a). Nodes A,-..,F represent simple region nodes and
contain operations. Nodes R represent combined region nodes as each has heterogeneous
descendants. Nodes P represent the predicate condition operation. The various code
motion transformations as listed in Figure 2(c) are given below. All the transformations
are subjected to dependence constraints and resource availability.

1 Code Duplication Operations from region A can be moved to regions B and C. Sim-
ilarly, operations from region B can be moved to regions D and E.

2 Speculative Execution Operations from region B and/or C can be speculatixely ex-
ecuted at region A. Similarly, operations from region D and/or E can be specu-
latively executed at region B. An operation is speculatively executed only if both
the renamed and the copy operation generated can be executed without increasing
execution time.

3 Predicated Execution Operations from B and/or C can be executed simultaneously
with the predicate condition operation P1. Similarly, operations from D and/or E
can be executed simultaneously with P2.

4 Delayed Execution Operations from A can also be moved to F.
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5 Eager Execution Operations from F can be executed eagerly at A.

At each stage, operations with maximum height are considered first as possible can-
didates for code motion. Among operations with the same height, the one with more
immediate breadth (successors) is selected next. We assume branch outcomes are un-
predictable and therefore assume equal frequency of execution on both branches. The
details and the style of each individual transformation can be found in [1]. Our previous
model did not incorporate predicated execution capabilities. We implemented the pro-
posed combining technique to facilitate predicated execution. We also implemented the
combining technique proposed by the hyperblock method in our model and compared it
with our technique.

2.2 Combining Algorithm

In this section, we explain our combining algorithm and then compare it with the similar
work done at the hyperblock level.

Definition I A parallel instruction is said to be of width w if it can execute w operations
in one instruction cycle. An instruction of width w can accommodate w regular
(ALU/memory) operations along with w copy operations.

Definition 2 P(X) represents the number of parallel instructions (of width w) required
to execute all operations in set X.

Figure 3 illustrates the combining technique proposed by the hyperblock method in
the framework of our region model. Figure 3(a) shows an example code fragment. Each
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region R1, R2, R3 and R 4 contains Q, R, S, T operations respectively. Assume that
both the branches (R2, R3) have equal likelihood of being executed and that the resultant
hyperblock formed comprises of R1, R 2, R3, R4 . Initially, all operations R and S present
in the true and false branch regions are predicated on condition pl. Assume, that only Z
and Z' can be speculatively executed from R and S, owing to dependence and resource 2

constraints. Figure 3(c) shows the code after Z and Z' have been speculatively executed.
In the hyperblock technique, all the remaining operations R' and S' which could not be
speculated, are predicated. This may consume unimcessary resources especially when the
code present in the untaken branch is sufficiently large. This can be avoided by branching
to the appropriate region depending on the outcome of pl. We also make the instruction
executing pl as a predicated instruction in order to facilitate parallel execution of control
dependent operations. Assuming that the width of the instruction is w, operations X
and X' from the true and the false branch regions are executed in parallel along with pl,
as shown in Figure 3(e). The equivalent pseudo-code formed is shown in Figure 3(f). A
predicated jump operation is now inserted.

The entire sequence of steps is summarized as follows. The schedule cost estimates
for each of the three cases (total predication, partial predication, no predication) are
first determined. The resultant global schedules formed using the schedules at the region
nodes (which are currently being used for analysis) are used as estimates for comparison
purposes. The process is repeated for each of the above three cases separately. The one
with a better estimate is chosen as the combining method and the process is repeated
until all the regions are considered for scheduling. The specific combining equations used
to achieve the above effect are given below.

P(R + S' S+ pl) > 1 + P(R") ... true (1)
P(R' + S' + pl) > I + P(S")... false (2)

0.5 * (P(R') + P(S')) > 1 + 0.5 * (P(R") + P(S")) (3)

P(RM + S' +pl) is the number of instructions required to execute operations R' (true),
S' (false) and the condition operation (pl) as shown in Figure 3(c). P(1") + 1 is the
number of instructions required to execute the remaining operations (W') in the true
branch plus the inserted predicated instruction as shown in Figure 3(f). Equations (1)
and (2) are used to determine if the cost of performing partial predication/speculation
as shown in Figure 3(f), is less than that of performing total predication, as shown in
Figure 3(c). Equation (3) compares the costs of performing partial combining against
following strict control dependence. The equations are multiplied by 0.5 to average the
number of instruction cycles required for the true and false branch respectively. Partial
combining is avoided if any of the above two conditions do not hold true. The average
performance of the algorithm can be improved by using weighted equations and/or profiler
estimates. We are currently studying the effect of the two in our combining heuristics.
Our combining algorithm is shown in Figure 4(a).

2Resource constraints here refer to the availability of these operations (Z and Z') being accommodated
for free in R1.
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Figure 4: (a) Combining algorithm (b) Results Obtained for an Issue Rate = 3.

3 Performance Evaluation

3.1 Evaluation Methodology

The underlying architectural model is a VLIW processor with homogeneous function
units. The latency of the ALU, memory (load/store) and branch operations is assumed
to be one, two and one respectively. Our current enhanced region scheduling (ERS)
compiler version does not handle procedure calls and pointer references. We also assume
that all the references to the cache are perfect. Thus, our results compare the relative
CPU execution times. An instruction of width w (initially assumed) can accommodate w
regular (ALU, memory, branch) operations along with w copy operations. All the results
are derived using a global list-based scheduler which schedules each region/predicate node
in an inorder fashion. The performance is measured as the number of instruction cycles
required to schedule the whole program. The speedup is measured as the ratio of the
number of cycles required for sequential execution over the number of cycles required
after performing parallelizing transformations.

The benchmarks consist of programs from the SPEC benchmarks, livermore loops
and other commonly used application programs. All the programs are written in C and
contain loops with one or more conditionals. In order to present a fair comparison with
previous methods, we avoided loop pipelining transformation in our analysis. However,
our combining algorithm can be used to treat pipelined loops as well. Peeled iterations
from the transformed (pipelined) loop body containing conditionals can be treated with
non-loop conditional constructs. In our analysis, loop peeling is performed first (if nec-
essary) to peel the iterations from the loop body. This transformation provides more
opportunities for code motion with the code present outside the loop body. Code motion
transformations are then performed to redistribute the parallelism among regions. The
proposed combining technique is applied during the code motion stage.
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3.2 Results

Consider Figure 4(b) and Figure 5 which show the performance increase for issue rates
of 3, 5 and 7 respectively. The issue rate is the maximum number of operations that can
reside in a single parallel instruction. PE shows the performance increase over sequential
execution using predicated execution support. All other transformations except specula-
tion are performed for tl case study. SE shows performance increase using speculative
execution support. Predicated execution support is avoided for this case study. Finally,
ERSI (hyperblock) and ERS2 (proposed), the two different combining approaches are also
shown. It should be noted that the amount of global speculative code remains the same
for SE, ERSI and ERS2. The performance difference for the three models comes in, how
the remaining unspeculated operations in each branch region are treated. SE disallows
control dependent operations to execute simultaneously. ERS1 allows control dependent
operations to execute simultaneously but predicates all the remaining unspeculated op-
erations pret i it in the branch regions. ERS2 performs partial combining as discussed in
Section 2.2.

The results show that SE performs better than PE for most of the test cases except for
the test case minmax. For the test case (Minmax) with multiple nested predicates (and
few conditionally executed operations), predicated execution has a greater performance
than speculative execution for lesser issue rates. Less speculative execution is performed
for low issue rates due to insufficient resources. However, for higher issue rates, the
performance is greater for speculative execution. On the average, speculative execution
performed 5%-16% better than using predication execution only.

It is interesting to note that SE performed better than ERS1 for most of the test cases.
This clearly shows that performing total predication of the remaining unspeculated oper-
ations may result in the consumption of extra cycles. The effect was more pronounced for
low issue rates and less for higher issue rates. An average of 2-3 peeled iterations from the
loop body was observed for most of the test cases. For test cases tomcatv and pterm.ops,
ERS1 performed consistently better than SE. This shows that for branch intensive pro-
grams with less side-effects (due to predicated execution), ERS1 can actually find more
parallelism than SE. However, the side effects seem to be more pronounced for other test
cases, thereby affecting the performance of ERS1. ERS2 seem to perform consistently
better than all the other models. On the average, the performance improvement of ERS2
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is around 10%-15%, 5%-20%, 15%-25% over using ERSI, SE and PE respectively. For
some of the test cases (kernel 20), the performance of ERS2 was similar to SE. The pro-
posed technique was never performed for that test case resulting in a similar performance.
Similarly, for the test case (bresnham), ERS2 and ERS1 had a similar performance.

4 Summary and Conclusions

In this paper, we have studied the effects of individual as well as combined effects of
predicated and speculative execution features. Previous studies have separately proposed
several hardware/software mechanisms to improve their existing performance. We show
that both predicated and speculative execution are important features and should be
employed by any parallelizing compiler in order to extract all the potential parallelism
available in a program. We also presented a technique which attempts to combine the
merits of the both and showed that the proposed technique performs better than the
technique proposed by the hyperblock method. All our transformations are performed
using the extended region model [1].

References
[1] V. H. Allan and J. Janardhan and R.M. Lee and M. Srinivas "Enhanced Region Scheduling on a

Program Dependence Graph," Proceedings of the 25th International Symposium on Microarchitecture
(MICRO-25), pp. 72-80, December 1-4, 1992.

[2] M.D. Smith and M. A. Horowitz and M. S. Lam "Efficient superscalar performance through boosting,"
Proceedings of the 5th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS- V), pp 248-259, October, 1992.

[3] D. Bernstein and M. Rodeh "Global Instruction Scheduling for Superscalar Machines," Conference
Record of SIGPLAN Programing Language and Design Implementation, pp 241-255, 1991.

[4] A. Nicolau and J. A. Fisher "Measuring the available parallelism for very long instruction word
architectures," IEEE-TC, pp 1088-1098, September, 1984.

[5] N. J. Warter and S. A. Mahlke and W. W. Hwu and B. R. Rau "Reverse If-Conversion," Conference
Record of SIGPLAN Programing Language and Design Implementation, June, 1993.

[6] S.A. Mahlke and D.C. Lin and W.Y. Chen and R.E. Hank and R.A. Bringmann "Effective Com-
piler Support for Predicated Execution Using the Hyperblock," Proceedings of the 25th International
Symposium on Microarchitecture (MICRO-25), pp 45-54, December 1-4, 1992.

[7] B. R. Rau and D. W. L. Yen and W. Yen and R. A. Towle "The Cydra 5 Departmental Supercomputer:
Design Philosophies," The IEEE Computer, pp 12-25, January 1989.

[8] K. Ebcioglu and T. Nakatani "A New Compilation Technique for Parallelizing Loops with Unpre-
dictable Branches on a VLIW Architecture," Languages and Compilers for Parallel Computing, pp
213-229, MIT Press, Cambridge, MA, 1990.

[9] J. Ferrante and K.J. Ottenstein and J.D. Warren "The Program Dependence Graph and Its Use in
Optmization," ACM Transactions on Programming Languages and Systems, Vol. 9, pp 319-349, July,
1987.

[10] A. Nicolau and R. Potasman and H. Wang "Register Allocation, Renaming and Their Impact on
Fine-Grain Parallelism," Proceedings of the 0'th International Workshop on Languages and Compilers
for Parallel Processing, August, 1991.

[11] R. Gupta and M.L. Soffa "Region Scheduling: An Approach for Detecting and Redistributing Par-
allelism," IEEE Transactions on Software Engineering, Vol. 16, pp 421-431, April 1990.



Parallel Architectures and Compilation Techniques (A-50)
M. Cosnard, G.R. Gao and G.M. Silberman (Editors)
Elsevier Science B.V. (North-Holland) 157
0 1994 IFIP. All rights reserved.

A PDG-Based Tool and Its Use in Analyzing
Program Control Dependences*
Chris J. Newburn, Derek B. Noonburg, and John P. Shen; (newbum, derekn, shen) @ece.cmu.edu

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract: This paper explores the potential of a program representation called the program dependence graph

(PDG) for representing and exposing programs' hierarchical control dependence structure. It presents several
extensions to current PDG designs, including a node labeling scheme that simplifies and generalizes PDG traversal.
A post-pass PDG-based tool called PEDIGREE has been implemented. It is used to generate and analyze the PDGs

for several benchmarks, including the SPEC92 suite. In particular, initial results characterize the control
dependence structure of these programs to provide insight into the scheduling benefits of employing speculative
execution, and exploiting control equivalence information. Some of the benefits of using the PDG inste, uf the
CFG are demonstrated. Our ultimate aim is to use this tool for exploiting multi-grained parallelism.

1. Introduction

A program representation called the program dependence graph (PDG) (6] explicitly represents all control depen-
dences, and readily identifies control-equivalent basic blocks that may be far away from each other in the CFG.
The hierarchical representation of the program control dependence structure in a PDG allows a large fragment of

the code to be treated as a single unit. Since the work by Ferrante et al. (61, a number of other researchers have
studied the use of PDG for code motion [8, 2, 51, program partitioning 1131, code vectorization 141, register alloca-

tion [II], program slicing and software engineering 19,12], and code translation for dataflow machines [3].

PDGs appear well-suited for the exploitation of program parallelism of different granularities. Current compilers
exploit fine-grained parallelism by overlapping the execution of instructions within a basic block or a small num-

ber of adjacent basic blocks, and medium-grained parallelism by overlapping the execution of loop iterations. Re-

cent studies 110] suggest that additional parallelism can be harvested if the compiler is able to exploit control

equivalence and use multiple instruction streams. This parallelism may not be strictly fine-grained or medium-

grained. Multi-grained parallelism is an informal generalization of parallelism that can be achieved by the parallel

execution of code fragments of varying sizes or granularities, ranging from individual instructions to loop itera-

tions, to mixtures of loops and conditionals, to large fragments of code. PDGs appear to be well-suited for exploit-

ing such parallelism, since such fragments are subgraphs of the PDG that :in be hierarchically summarized, and

because they explicitly maintain accurate control dependence information.

Our eventual goal is to develop a PDG-based compilation tool capable of performing powerful code transforma-

tions to exploit multi-grained parallelism. This paper presents our initial results, most of which focus on programs'

control dependence structure. It proposes a number of extensions to the current PDG design in order to facilitate

more generalized code motion of varying granularities, for even unstructured and irreducible programs. A node la-

beling scheme is introduced that simplifies and generalizes PDG traversal.

The initial portion of a prototype PDG-based tool called PEDIGREE is complete. It is a post-pass tool which can

be used in conjunction with existing compiler front ends or disassemblers to perform optimizations on existing

source or object code. Currently, PEDIGREE is able to parse large, unstructured and irreducible programs into its

internal PDG representation. The PDGs of these programs are analyzed, and their control dependence structures

are characterized. Section 2 introduces the PDG and presents our extensions to the PDG. The PDG node labeling

* Supported by National Science Foundation Graduate Research Fellowships, and ONR contract No. N00014914--1518.
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scheme is summarized in Section 3. Section 4 briefly describes the implementation of PEDIGREE. Section 5 an-

alyzes the PDGs generated by PEDIGREE for a number of benchmarks, including some from the SPEC92 suite.

The advantages of using the PDG over the CFG are highlighted using collected statistics in Section 6. Section 7

provides a summary and suggeats potential code transformations that can be implemented based on PEDIGREE.

2. The Program Dependence Graph

The program dependence graph [61 is essentially a hierarchical control dependence graph (CDG) and data depen-
dence graph. The explicit representation of contrcl dependences facilitates the identification of control-equivalent
code. The hierarchical control dependence structure identifi, and groups code constructs for special processing.

2.1. PDG Definitions

A control flow graph (CFG) represents a single procedure. Nodes in a CFG are basic blocks. An arc between
nodes X and Y indicates one of the following: (a) a conditional or multi-way branch from X to Y, (b) an uncondi-
tional branch from X to Y, (c) X does not end with a branch and is immediately followed by Y, (d) X ends with a
procedure call, and Y . the return target of the call. Only type (a) arcs represent true control dependences. They
are traversed only on a specified condition, while the travcrsal of arcs of type (b), (c), and (d) does not depend on
any condition. Figure Ib shows a typical CFG for the code in Figure Ia.

Nodes in a control dependence graph (CDG) may also be basic blocks. In a CDG, however, an arc from node X to
node Y indicates that Y is immediately control dependent on X. This means that X ends with a conditional or
multi-way branch, and that Y's execution depends on the value that determines the path out of X. 'Ibis value is in-
dicated by the arc label. Figure Ic shows the CDG derived from the CFG in Figure lb. In the CFG, B6 follows
B3, B4, and B5. However B6 is not control dependent on any of these; in fact, it is control equivalent to B3. CDG
siblings that have exactly the same incoming arcs are control equivalent.

The program dependence graph (PDG) extends the CDG with hierarchical summary and data dependence informa-

tion. The PDG has additional nodes and arcs to represent hierarchical relationships. PDG nodes hierarchically
summarize regions of the CDG, rather than summarizing strongly-connected CFG components like a hierarchical
task graph [7]. PDG nodes are classified into three basic types [8]. Code nodes represent basic blocks, and are leaf
nodes in the PDG. The control dependences in the CDG are represented in arcs which emanate from Predicate
nodes. Region nodes group together all nodes which share a common set of control dependences. Each Code node
contains the set of instructions from the corresponding basic block. Conditional branch instructions are associated
with Predicate nodes rather than Code nodes, since descendants of Predicate nodes are control dependent on the
branch. Instructions can be broken into smaller sets, with Code nodes representing sub-blocks. Other PDG imple-
mentations, e.g. [2,4,6,8,13], generally use leaf nodes that represent statements rather than basic blocks. The repre-
sentation of data dependences is orthogonal to the control dependence structure. Data dependences may be
represented only within basic blocks if control flow order is maintained, or the representation may be as sophisti-
cated as Gated Single Assignment form [(1.

PDG arcs represent two distinct concepts. Control dependence arcs represent control dependences, and thus must
emanate from a Predicate node. They correspond to the arcs of the CDG, and are labeled similarly. Conditional

branches use two arc labels, 1T and F. Multi-way branches, e.g. from case statements, have a unique arc label for
-'ach branch target. Unlabeled arcs, which emanate from Region nodes, are called grouping arcs. They represent

transitive, rather than immediate, control dependence for a set of nodes with a common set of control dependences.
Arcs which emanate from the same node can be ordered according to the original control flow order [8]. This or-
dering is necessary only to preserve inter-node data dependences if they are not explicitly represented. It also sim-

plifies data flow analysis and allows regeneration of a CFG identical to that from which the PDG is generated.

Figure Id shows the original PDO representation [61 constructed from the CDG in Figure Ic. It has the same over-
all structure, but Region nodes have been added for each set of CDG nodes with control dependences in common.
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NUMEL=0 E E
DO 360 I=1,18 FT

360 NUMEL=NUMEL+JELCNT(I)
NUMTEM=MAX0(NUMTEM-1. 1) BI T
IDIST=MINO(IDIST, 1)

B1: numel =0 BI B2 B30
i =B2

B2: jelcnt-i = load jelcnt,i T F
numel = numel + jelcnti B4 B5 B7
i = i + I B3
b (i <= 18) B2 F (c) The CDG for the fragment

B3: numtem' = numtem - 1

b (numtenm' S 1)B5 B4 B5_______________
B4: numtem nuite' Bi Basic block i in CFG

br 66 Ri Region node
B5: nuitem = 1 Ci Code node for CFG node Bi
66: b (idist 5 1) B8 Pi Predicate node for CFG node Bi
B7: idist = 1 B7 Li Loop node
B8: ... ProcProc, the procedure node

EN Procedure entry
(a) FORTRAN and pseudo code B8 EX Procedure exit

for a fragment of SPICE Control dependence

SEX induced by loop back arc

(b) The CFG for the fragment

) erranteet al.'s PDG for the fragment
w at basic block vs. statementlevel) (e) PEDIGREE's PDG for the fragment

Figure 1. (a) FORTRAN example from spice, and its (b) CFG, (c) CDG, (d) PDG as specified in [61, and (e) our PDG

2.2. PDG Extensions

This work extends the PDG to better support exploitation of multi-grained parallelism. First, the Region node type
described above is subclassified. This is done to identify and isolate PDG phenomena like cycles, regions with
multiple control dependences, and irreducible loops, so that they can be handled more efficiently. Second, new
node types are added to represent procrJure calls and procedure entry points. Finally, each PDG node is labeled to
indicate its position within the PDG. These labels facilitate efficient PDG traversal and computation of inter-node
relationships such as dominance, reachability and control dependence. The first two extensions are presented in the
following subsections; node labeling is presented in Section 3. Figure le exemplifies this type of PDG.

2.3. Subclassiflication of Region Nodes

The generalized Region node type is subclassified to represent certain control dependence structures which should
be handled differently by the compiler. The special treatment of the region associated with one of these special Re-
gion nodes is indicated by the region type.

Multiple-predecessor (MultiPred) nodes group sets of nodes that share multiple immediate control dependences.
MultiPred nodes can arise from unstructured control flow like goto and break statements. A MultiPred node
signals the compiler that special actions, such as code replication or liveness analysis, must be taken when moving



161

Cell: 0 1 2 3
T Label: T2 T 2F I T 15 ...
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T T~Pointer--- - rSection number, e g. 0, 1,..
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TF. T T FO 22 F21 T2 F1-3

TTl- B3 cell 012 0 1 2 0 1
TITI cond nest level 0 1 2_ 0 1 2 0 1
- ......... i ocod T T F ITT d of

T2 B5 stnumber I1 1 0 2 2 0-2 2 1-3
U2 2P imer T N1 r P6 P7 PP

T )(c) Elements of CFG and PIDG labels

(a) CFG example, showing conditional levels i = 0, 1 and 2
and increasing section numbers within each level

EN Pr Proc node
F Bi Basic block i

TO B6 Ci Code node for Bi

T F Pi Predicate node for Bi
Mi MultiPred node T(1-3)
EN CFG procedure entry T T4M1 BX CFG procedure exit F

F TO TT-3)
T2OC7 P7 C8

T4 
B

EX9. T2FTr2FI
'T2F2

(b) CFG example, showing overlapping sides (d) P1)0 for (b)
of a conditional, with B0 on both sides

F~igure 3. Labeling examples. (a) CFG for structured code, (b) CFG for unstnic-
tured coder (c) Elements of CR3 and PDG labels, (d) PDG for the CFG in (b).

Figure 3a illustrates conditional nesting levels. Split EN is at level 0, BI is at level 1, and B2 is at level 2. Figure
3c illustrates the makeup of the label for B3, TITIFO. It has three cells since it has three enclosing conditionals.
Cell O, TI, describes B3's position within the outermost conditional: it is on the true side and it is in section 1. BI
is in section 0 and B5 is in section 2 at nesting level 0. Cell I, TI, describes B3's position within the enclosing

conditional whose split is at level 1, B1. It is on the true side, and in section 1. Because B3 shares a common pre-
fix, TI-, with B2, and it has a larger section number than B2 in cell i, it must be reachable from B2. Finally, it is
the first node in the innermost conditional nesting level, and thus has a section number of 0 in the last cell. Cell I
of B4's label, FO, indicates that it is on the false side of the enclosing conditional at level I.

Standard programming constructs such as if-then-else, multi-way branches and loops form structured code.
Unstructured code allows control to flow from one side of a conditional to another, such that some nodes in that

conditional are on more than one side of the conditional. A label can only describe position with respect to one
side of a conditional, so such nodes are assigned one label for each side of a conditional that they are on. In Figure
3b, a conditional is formed by the split node B6 and structured join B 11, which are at level 1. The side of this con-
ditional associated with the T arc from B6 has nodes B7, B9 and BI0. The other side of the conditional consists of
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If a PDG is constructed for every procedure in a program, then a Call node can contain a pointer to the called pro-
cedure's PDG. An implicit call graph of the program is then present, with the PDGs as nodes, and the procedure
pointers within Call nodes as arcs. Summary information for a procedure can be maintained in the Proc or Call
nodes to support inter-procedural analysis and demand-driven inlining.

With this PDG design, a code fragment of varying size and granularity, including a mixture of control-equivalent
regions of different granularities, can be summarized by a Predicate or Region node and treated as a single unit.
This enables these fragments to he moved past other such fragments in what can be called multi-grained code mo-
tion. Identification of different types of regions indicates how each region should be treated. The next section de-
scribes a node labeling scheme that facilitates generalized PDG traversal for - ode motion.

3. Node Labeling and PDG Construction

A node labeling scheme is proposed which labels each node in a PDG, as well as in a CFG, so that its position rel-
ative to any other node may be determined by comparing their labels. This facilitates computation of reachability,
dominance, and control dependence relationships, as well as node-to-node traversals. Without such a labeling
scheme, these operations would require expensive traversals from the root to each node. The labeling scheme pre-
sented here handles unstructured and irreducible code. In addition, it allows inserted nodes to be labeled without
global changes to other node labels. Finally, a labeled PDG can be constructed during CFG labeling with minimal
additional computation. A brief description of the labeling scheme follows.

3.1. Program Control Dependence Structure

The structure of a program is determined by its patterns of control flow. There are three important control flow pat-
terns: splits, joins, and back arcs. A split is a CFG node with multiple successors because of a conditional or multi-
way branch. It has one successor for each branch target, or "side", of the conditional. For example, an if-then-else
construct has a split with two successors, one for the "then side" and one for the "else side", and a case statement
has a split with one side for each case. Joins are CFG nodes with multiple predecessors. These occur when two or
more paths rejoin. Each split has a corresponding structured join, which is the first CFG node where all paths from
that split rejoin. In structured code, all joins are structured joins. In Figure 3b, the splits are EN, B6, and B7. The
structured joins for these splits are EX for EN, and B II for both B6 and B7. B 10 is not a structured join. A back
arc is a control-flow arc such that the tail of the arc has a higher depth-first number [I] than the head.

Nodes must be labeled such that a comparison of the labels indicates reachability, dominance, and control depen-
dence. Node Y is reachable from node X iff they are on the same side of all enclosing conditionals and Y is on
some path from X to EX that does not include back arcs. X dominates Y iff all paths to Y from EN pass through X.
Y is control dependent on X if X is a split, and Y is inside that split's conditional. In order to evaluate these rela-
tions, the following information must be maintained at each node: 1) the conditionals it is nested within, 2) which
sides of each enclosing conditional the node is on, and 3) relative position on each of those sides. Conditionals
may be nested, producing the different conditional nesting levels illustrated in Figure 3a. The EN and EX nodes
are at level 0. A node at conditional nesting level i is nested within i conditionals.

3.2. Node Labeling

A label consists of an array of cells, where cell i describes the node's position within the enclosing conditional
whose split is at nesting level i. Each cell has two fields. The first specifies which side of that conditional the node
is on, e.g. with a truth value of T or F The second is the section number, which indicates the relative position on
that side of the conditional. It can take on values like 0,1,2... . When inserting a new node between two existing
nodes, non-integer values can be used for section numbers to avoid having to modify section numbers of any exist-
ing nodes. Section numbers increase in the forward direction. Each cell also has a pointer to the CFG split or
immediate PDG ancestor in the innermost enclosing conditional. This pointer aids in node labeling and PDG tra-
versal of unstructured code. Figure 3c shows the elements of a label, and shows the correspondence of labels' cells
to nodes with three examples.
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nodes B8 and BlO. BIO is on both sides of the conditional because arcs B7-BIO and B8-BlO bridge between sides
of the conditional. Thus B 10 has two labels, one for each side of B6, with opposite truth values in cell I.

Labels of Predicate and Region nodes have ranges for their section numbers in the last cell, 1, instead of single val-
ues. The range bounds the possible section number values for cell I in the labels of the descendants of that node.
Hence the labels of the root of a region can be inspected during traversal to determine if a particular labeled node is

in that region. For example, in Figure 3d, all of P7's descendants have a label in the range (T2TI, T2T3), abbrevi-
ated T2T(1-3). The section number range is distinct from the multiple labels associated with MultiPred nodes. For
example, MIO has two labels, T2T2F(O-2) and T2F(I-3).

3.3. PDG Construction

CFG node labels are assigned in depth-first order [1]: each node is labeled prior to its successors. The label(s) for
a node are constructed from its predecessors' labels. Labels are essentially a list of conditionals whose splits have
not been rejoined. Labels have a new cell appended for every conditional their node is nested within. At a struc-
tured join, labels from predecessors on all sides of a conditional are merged into a single, shorter label.

A PDG and its node labels may be constructed as the CFG is labeled. After a CFG node is labeled, a PDG Code
node is created, along with a Predicate or Call node if the CFG node ends with a conditional branch or call instruc-
tion, respectively. A Loop or IrrLoop node is generated for each loop entry, and MultiPred nodes are generated for

nodes with multiple control dependences. Code nodes are assigned the labels of the corresponding CFG nodes.

The immediate control dependence of CFG node XC on the split node SC of its innermost enclosing conditional is
indicated by the last cell of Xc's label. A control dependence arc is added in the PDG from the Predicate node Sp
that corresponds to SC to the PDG node Xp that corresponds to XC. The last cell of Xp's label points to Sp. In Fig-
ure 3, B6 has corresponding Code and Predicate nodes C6 and P6. C6 has the same label as B6, while P6's labels

bound the labels of C7-CIO. Since CIO has multiple immediate control dependences, a MultiPred node MIO is
created for it. As seen in Figure 3c, both of M10's labels have their pointers set to P6 in cell 1. The section num-

ber ranges for Predicate and Region node labels are assigned after all of their children have been constructed.

3,4. Uses of Node Labels

With this node labeling scheme, evaluation of reachability, dominance, and control dependence are quite efficient.
Let A[i] be the ith cell of label A, and let d be the first cell index for which labels A and B differ. A < B if Aid] and
Bid] have the same truth value, and A[d] has a lower section number. For example, T2TI < T2T2FI but T2TO i
T2F2. Node B is reachable from A iff there exists a label of A, A,, and a label of B, Bp, such that Ai < B. In Figure

3a, B2 is reachable from BI since TO < TITO. B2 (TITO) is not reachable from B4 (TIFO) because their labels
have different truth values in the first differing cell. Node A dominates node B iff for all of B's labels, Bj, there
exists a label of A, A1, such that Ai < Bj and the first cell in which A, and Bj differ is the last cell of A.. The defini-

tion of postdominance is similar. In Figure 3b, B7 does not domwate B8 because they are on different sides of a
conditional. B6 dominates BIO, but B7 does not dominate BIO. BIO postdominates B8. Control dependence is
indicated with a pointer in cell i to the split at conditional nesting level i, on which the node is control dependent.

Labels uniquely describe a location in the PDG that is a target for traversal, since no two nodes have the same la-

bels. PDG traversal from node N toward a target label T proceeds one PDG node at a time. The direction from N

- right, left, up or down - is determined by comparing T's label(s) with the label(s) of N and its neighbors. If the

next neighbor in the direction of traversal is past the target, traversal stops. Unstructured code creates multiple

paths in the PDG, between a MultiPred and the first Predicate that dominates the code in the MultiPred region.
Non-overlapping traversal along multiple paths is very difficult without guidance from a labeling scheme. Con-

sider traversal from MIO in Figure 3d to C6 via P6, along the two paths. P6 is the first node common to all paths
up from MIO, as determined by the pointers to P6 in MIO's labels, shown in Figure 3c. Non-overlapping traversal

from MI0 along one path proceeds only up to P6 without visiting it, while the second should then proceed through
P6 to C6. The target for traversal along the first path should be inside P6's region but before all of its children,

such as TI.5, since TI < TI.5 < T2-. The target label for the other path toward C6 remains TO. TO is before TI,
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so traversal continues to the left of P6. Such traversal is important for code motion, since it allows multiple copies
of code moved out of a MultiPred region to be unified at the dominating Predicate. Section 5 addresses the com-
plexity of label comparison and PDG construction. It uses collected data to illustrate their efficiency.

4. PEDIGREE: A PDG-Based Framework

The implementation of a post-pass, PDG-based, retargetable compilation environment called PEDIGREE is in
progress. PEDIGREE is implemented in C++, following an object-oriented design philosophy. The unique treat-
ment of each kind of PDG node, for summary, traversal, and scheduling, is encoded into the members and member
functions of different classes. The software architecture has four layers. Lower layers generally provide services
to higher layers. At the bottom, the basic layer handles fundamental data structures such as graphs. The represen-
tation layer deals with the CFG and PDG program representations. This includes constructing the CFG and PDG,
and providing generic traversal functions. The scheduling layer provides low-level transformations related to code
motion, including functions to perform data dependence analysis and memory disambiguation, as well as functions
to actually move regions in the PDG. At the top, the guidance layer makes decisions regarding scheduling heuris-
tics. This includes identifying parallelism-lean regions and attempting to fill them with code from parallelism-rich
regions. The first two layers have been completed. Implementation of the third is nearing completion.

Currently, PEDIGREE performs the following functions. It parses assembly files generated by a high-level lan-
guage compiler for an instruction set architecture specified in the architecture description file. It constructs a CFG
ft; each procedure, constructs a labeled PDG, analyzes the PDG, and generates statistics. It also regenerates the
CFG from the PDG in order to verify correct PDG construction. PEDIGREE has been used to collect the data for
the SPEC92 benchmarks. It is currently targeted to the DEC Alpha 21064, but can be easily retargeted.

5. PDG Analysis

The current implementation of PEDIGREE has been used to analyze several benchmarks. A subset of ten bench-
marks, including nine from the SPEC92 suite, are selected for presentation here. This section presents initial results
for these benchmarks in two areas: general PDG statistics and PDG construction and labeling complexity.

5.1. General PDG Statistics

Table I lists the benchmarks used in this paper, and presents the distribution of the different types of PDG nodes.
The presence of MultiPred nodes indicates that compilers must be able to handle the unstructured code in these
benchmarks. The number of MultiPred nodes may be unexpectedly high for some of these benchmarks, but un-

Table 1: PDG Statistics

Bench- lines of # pro- # PDG # PDG # Code # Pred- # Call # Multi- # Loop # Multi-waysourre br. (avg#sourc mark assembly cedures nodes arcs nodes icates nodes Preds nodes IrrL..oops targets)

SPECfp92 ear 16902 113 1 2812 2849 1511 504 578 38 106 0 2 (18)

nasa' 10095 18 985 1100 512 229 93 0 133 0 0 (-)

spice. 115013 111 13615 14734 7498 2817 2614 343 555 20 21 (6.2)

ton.1atv 1815 1 170 189 95 34 20 0 20 0 0 (-)

SPECint92 compress 4302 16 762 791 435 165 130 17 16 0 1 (10)

eqntott 14319 62 2527 2691 1396 577 367 61 125 0 12 (7.5)

espresso 74277 361 15246 15874 8314 3170 2690 197 711 0 6 (12.8)

li 31868 357 6141 6132 3274 1118 1270 149 122 0 10 (7.6)

sc 44198 151 7544 7892 4157 1554 1460 161 222 0 22 (18.3)

olser Iloops 3142 2 318 367 160 53 52 0 51 0 0 (-)

* One spice procedure not processed at this time.
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structured code can arise from goto and break statements, and from retrns from within a procedure. Many of
the programs are call-intensive, suggesting that inlining and inter-procedural analysis could provide considerable
benefit. The conditional nesting depth can be larger than the nesting of i f statements. The body of all loops that
have an exit test at their entry point are control dependent on the exit Predicate. Multi-way branches are fairly
common in integer code. The last column of Table I shows that the average number of targets ranges from 4 to 18.
The number of PDG nodes, arcs, and labels are an indication of the memory requirements of the representation.
The average number of PDG nodes per basic block is approximately 1.7.

5.2. Node Labeling Statistics

A node's label length is equal to its conditional nesting depth. Table 2 shows that it is largest for benchmarks with
unstructured and irregular code, like spice, sc, and li. The cases with the largest average and maximum number of
labels arise in parsers with switch statements whose cases have returns in them. Because the returns create a path
from the multi-way branch to the exit, all the paths from that split are not rejoined until the procedure exit node.

The time for CFG labeling, PDG construction, and label comparisons depends primarily on the length and number
of labels at each node. The complexity of label comparisons is O(CU2), where C is the conditional nesting depth,
and U is the nun her of labels per node. Since the average and maximum values of these parameters shown in Ta-
ble 2 are small,! abel comparisons are generally efficient. Table 2 also shows labeling and PDG construction time,
in seconds, on a 133 MHz Alpha 3000/400. This time is most affected by the number of PDG nodes, the number of
labels per node conditional nesting depth, and loop nesting depth. The implementation has yet to be optimized.

Tab ie 2: Control Structure and Lubeling Statistics, Ordered by Number of PDG Nodes

BenchmrkN•. of Avg. inst .Nonberof Avg. c,.ond. Max cond. Avg Max.#-of Avg loop M-. loop Labeling,
Becnk ba ic Iper basic nesting nesting # of labels labels per nesting nesting P00 con-

MISCe blo, tss block PGnds depth depth per node nods depth depth stanction (s)

toescatv 9. 7.78 170 1.92 4 1.00 1 1.52 3 0.91

Iloops 164 9.99 318 1.01 2 1.00 1 0.69 3 2.37
compress 467 4.00 762 8.61 19 2.57 48 0.52 2 3.98

nasa7 548 . 13 985 2.01 5 1.00 1 1.44 4 4.09

ear 1737 4.36 281! 2.74 18 1.14 16 0.36 3 6.27

eqWton 1765 4.11 2933 6.40 16 2.53 84 0.81 7 17.11

li 3493 3.16 5323 8.23 21 2.74 1024 0.25 2 21.61

sc 4459 3.70 7544 10.03 24 3.86 81 0.75 7 229.29

spice 6850 7.11 12237 8.07 23 3.56 178 1.18 7 3500.91

espresso 8331 4.03 14008 385 I5 1.29 49 0.58 4 197.22

6. Scheduling Scopes

Several researchers 12,3,4,5,6,8,11,131 have proposed the PDG as a better representation than the CFG for use in
code optimization. The size of the scope for code scheduling is a key factor in code optimization. The results in
this section highlight the available scopes for code motion and scheduling using the PDG representation, and show
how they compare with available scopes using the CFG representation. Since the data dependence analysis of
PEDIGREE is not yet complete, data dependences and specific code motion techniques are not addressed here.

6.1. Scheduling Scope Without Speculation

A PDG explicitly represents all control dependences. Region node are used to identify a set of control-equivalent
basic blocks. All control-equivalent basic blocks can be grouped into one scope for fine-grained scheduling (sub-
ject to data dependences). These basic blocks may be separated by potentially large distances in the CFG, making
it difficult for CFG-based techniques to harvest such parallelism. Table 3 presents the average sizes of these con-
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Table 3: Scope Size Without Speculation

Benchmnaks ear nasa7 spice Ioncazv compwss eqpton espresso Ii sc Iloops WHIM

PDG B.S. 4.8 9.0 7.3 22.8 2.6 3.1 5.2 4.2 3.2 90.8 5.1

Watr 24.3 87.8 57.1 242.9 10.3 14.4 25.2 18.5 12.2 1038.6 23.9

CFG B.S. 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0

low. 5.4 9.8 8.4 8.0 4.3 5.0 4.6 4.1 4.0 10.2 5.6
trol-equivalent PDG scopes and non-speculative CFG scopes. It is assumed that code is not mFovedý to blocks with

lower execution frequency. For example, moving code from outside a conditional onto all paths of the conditional
requires replication and results in code explosion. This assumption limits PDG scope sizes more than CFG scope

sizes. The weighted harmonic mean of the number of control-equivalent basic blocks, across all benchmarks, is

5. 1, and the corresponding number of instructions is 23.9. For comparison, the analogous average scope sizes that

can be obtained using CFGs without speculation are 1.0 basic blocks and 5.6 instructions. The ability to identify

control-equivalent basic blocks enables PDGs to increase the average scope size for fine-grained scheduling to

over five times that of the CFGs. Potentially, this ability could significantly increase instruction-level parallelism
and resultant performance. Actual increases will depend on data dependences.

The difference in scope sizes is primarily due to the intrinsic weakness of the CFG: not explicitly representing con-
trol dependence information. The control equivalence of basic blocks before and after a conditional (or called pro-
cedure) cannot be determined, in general, with traversal along a single path. Consequently, code motion
techniques that traverse CFG paths would not be able to determine this equivalence and would need to conserva-
tively assume that these two basic blocks are control dependent. Use of the CFG effectively induces "false" con-
trol dependences. The scope for fine-grained code motion is restricted by these false dependences. Control-
equivalent basic blocks that are dispersed throughout the program can be easily identified using the PDG.

6.2. Scheduling Scope With Speculation

Speculative scheduling involves moving instructions across basic block boundaries, or to be more precise, moving
instructions so that they are executed prior to the resolution of their control dependence conditions. To perform
speculative code motion, a speculation scope is usually identified by grouping multiple basic blocks that are adja-
cent in the CFG. The degree of speculation is typically measured in terms of either the number of basic block
boundaries crossed or the number of conditional branches crossed. The opportunity for code motion generally in-
creases with a larger scope, which can be obtained with highcr degmes of speculation.

Figure 5 presents the PDG and CFG speculation scope sizes for va-tous degrees of speculation (DOS). Figure 5
presents corresponding scope sizes when speculation across I,,, bo&k arcs is considered. Given a DOS of N, the
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Figure 4. Scope size as a function of degree of speculation, for the PDG (a) and the CF:G (b)



167

Pi c . 0 2 .1

10- P. x

140 WAMI ,.-

F0 coapM, A
2 0 4 - , -0- ..

e100 a .0.. L6 --------- ------18 -

so .0.1. 120m 
-D -•.<

..... =• "0:..- -+. .60 A.0 .rS.... .. .. .. -- ' ... ý 7. " ,• I

0 I 2 3 4 234

Degree of Speculation Degree of Speculation
Figure S. Scope size as a function of degree of speculation, considering

speculation across loop back arcs, for the PDG (a) and the CFG (b).

CFG speculation scope size indicates the average number of basic blocks that are reachable from a reference basic

block by traversing up to N divergences of control flow, i.e. N splits in the forward direction or N joins in the back-

ward direction, CFG scopes are not permitted to extend past procedure calls. The PDG speculation scope is deter-

mined by crossing up to N true control dependences. Only control dependences are considered, not the original

control flow order. Thus intervening Call nodes are ignored. ]nlining should further increase PDG scope sizes.

The average PDG scope size in basic blocks across all benchmarks is 9.0 for DOS i, and 14.7 for DOS 4. When

speculation across loop back arcs is permitted, this number increases to 25.6 for DOS 4. The average scope size in

instructions is 37.0 for DOS I and 57.7 for DOS 4. The corresponding CFG scope sizes are 1.7 (DOS 1) and 1.9

(DOS 4) basic blocks, and 8.4 (DOS I) and 9.4 (DOS 4) instructions. PDG speculation scope size is 5.3 times

greater on average than the CFG speculation scope size for DOS 1, and 7.7 times greater for DOS 4. Clearly, for

speculative scheduling with a given degree of speculation, the PDG provides larger scopes for scheduling than the

CFG. Furthermore, certain speculations in the CFG are not truly speculative, due to the false control dependences

induced by the traversal of paths in a CFG. Consequently, some basic blocks in the speculation scope of degree N

are not necessarily speculative of that degree.

Space does not permit presentation of more detailed data for individual code modules, but some insights are pro-

vided here. The bigger the procedure, the larger the PDG scopes, and the greater the benefits of the PDG vs. the

CFG. For very small procedures without procedure calls, the PDG and CFG scope sizes are similar, although CFG

scopes rise more slowly with DOS. The increase in scope size in the PDG levels off quickly for very shallow

PDGs (e.g. espresso's cubestr) and more slowly for deeper ones (espresso's my_reduce). Calls are very limiting to

CFG scopes. Table 2 indicates that ear, spice, li and hloops have a high ratio of Call nodes to Code nodes. This

may explain why these benchmarks have smaller CFG scope sizes. As can be observed from a comparison of Fig-

ure 5 and Figure 5, the relative contribution of speculation across loop back arcs is small for low DOS. For higher

DOS, when other speculation potential is exhausted, consecutive loop iterations offer a continuous supply of paral-
lelism. Loop speculation accounts for only 18% of the scope size increase of 4.7 basic blocks from DOS 0 to DOS

I. But it accounts for 77% of the scope size increase of 6.2 basic blocks from DOS 3 to DOS 4.

Two key differences between the CFG and the PDG are that the PDG represents the control dependences instead of

the control flow of the CFG, and that the PDG has the capability for hierarchical representation using region nodes.
The former removes the undesirable artifacts of the original sequential code. The latter allows encapsulation of in-

formation and more efficient traversal of the PDG during code motion. Initial results from the PEDIGREE tool ap-

pear to support the claims of the proponents of the PDG 12, 5, 6, 8, 131.

7. Summary and Potential PDG-Based Optimizations using PEDIGREE

The PDG described here is useful in exposing hierarchical control dependence structure. This information can be
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used to determine the kind of transformations that should be applied to each section of the program, e.g. specula-

tion, loop optimization, and replication. PDG analysis suggests the benefits of increased scope size for different

degrees of speculation, and can provide guidance in selecting appropriate aggressiveness for each procedure. The

use of accurate control dependence information to avoid unnecessary speculation provides a 5x increase in scope

size. Aggressive scheduling techniques are needed to exploit parallelism for non-loop code on wide architectures.

Exploiting even a small fraction of the additional parallelism discussed here is a significant step toward that goal.

The existing PDG-based tool, PEDIGREE, provides a framework for future development of a number of useful ca-

pabilities. It can be extended to take advantage of PDG features to 1) increase the scheduling scope and guide
speculation with accurate control dependence information, 2) perform inlining and inter-procedural analysis, 3)
move any region of code along an unstructured path, 4) schedule for multiple-instruction stream architectures, and
5) perform binary optimization. The data from Section 6 suggests that the PDG scopes for code motion for a given
degree of speculation are significantly larger than those of a CFG. Fine-grained code scheduling techniques can be
implemented in PEDIGREE to take advantage of the larger scope. The Call and Proc nodes added here facilitate
inlining, which can further increase scope size. They can also be used to summarize parallelism, variable usage,
and execution frequency, in order to inform a global guidance layer of the benefits of inlining, and to facilitate in-
terprocedural analysis. The implementation of inlining and use of branch profiling data will be completed shortly.

The PDG's features provide a solid basis for partitioning and scheduling code for multiple-instruction stream ar-
chitectures. Such features include its ability to represent parallel schedules, its summary of parallelism informa-
tion that guides trade-offs in the redistribution of parallelism, and its support for generalized multi-grained code
motion. Parallelism studies (101 indicate that exploiting control parallelism in multiple instruction streams can

lead to a three-fold performance increase over a single instruction stream for non-loop-intensive code.

The post-pass PEDIGREE tool currently parses assembly files and constructs the PDG for a given architecture
specified in an architecture description file. Using this feature, PEDIGREE can be easily retargeted for other as-
sembly languages. There is potential for using this tool to perform translation and optimization on existing object
code. This will permit the effective execution of a large volume of existing software on new platforms without re-

compilation from the source. Future exploration of this potential application using PEDIGREE is planned.
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Abstract: Many coarse-grained, explicitly parallel programs execute in phases delimited
by barriers to preserve sets of cross process data dependencies. One of the major obstacles
to optimizing these programs is the necessity to conservatively assume that any two
statements in the program may execute concurrently. Consequently, compilers fail to
take advantage of opportunities to apply optimizing transformations, particularly those
designed to improve data locality, both within and across the phases of the program.

We present a simple and efficient compile time algorithm that uses the presence of barriers
to perform non-concurrency analysis on coarse-grain, explicitly parallel programs. It
works by dividing the program into a set of phases and computing the control flow between
them. Each phase consists of one or more sequences of program statements that are
delimited by barrier synchronization events and can execute concurrently. We show that
the algorithm performs perfectly on all but one of our benchmarks.

Keyword Codes: D.1.3; 1.1.3
Keywords: Concurrent Programming; Languages and Systems

1 Introduction

On cache coherent shared memory multiprocessors, much of the "unnecessary" commu-
nication, i.e., that which could be eliminated with locality enhancing optimizations, is
coherency overhead caused by false sharing [22, 101. False sharing occurs when multiple
processors access different words in the same cache block. Although they do not actually
share data, they incur its costs, because coherency operations are cache block-based. In
a write-invalidate coherency protocol the overhead of false sharing takes the form of ad-
ditional invalidations when a processor updates data and invalidation misses when other
processors reread (different) data that reside in the invalidated cache block. In some
coarse-grain, explicitly parallel applications, misses due to false sharing make up between
40% and 90% of all cache misses (over block sizes ranging from 8 bytes to 256 bytes) [101.

False sharing is caused by a mismatch between the memory layout of write-shared data
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and the cross-processor memory reference pattern to it. Manually changing the placement
of this data to better conform to the memory reference pattern reduced false sharing misses
by 40% to 75% 122, 10]. However, manual restructuring requires that the programmer
pinpoint the data structures that suffer from false sharing in a particular memory (cache)
architecture. This is hard to determine; knowledge of how each data object is shared
is often non-intuitive, and each application must be tailored to the particular memory
architecture of the system on which it is running.

For these reasons we have automated the elimination of false sharing. We have added a
series of compiler-directed algorithms and a suite of transformations to a source-to-source
restructurer to transform shared data at compile time. Our algorithms analyze explicitly
parallel programs, producing information about their cross-processor memory reference
patterns that identifies data structures susceptible to false sharing, and then chooses
appropriate transformations. They were more successful than the programmer-directed
approach in restructuring shared data, eliminating up to 97% of all false sharing misses.

The compiler analysis involves three separate stages. The first determines which sections
of code each process executes by computing its control flow graph [13]. The second
performs non-concurrency analysis [16] by examining the barrier synchronization pattern
of the program, and delineating the program into phases that cannot execute in parallel
The third stage performs an enhanced interprocedural, flow-insensitive, summary side-
effect analysis [7] and static profiling (23] on a per-process basis (based on the control
flow determined in stage one) for each phase (determined in stage two). The second stage
of this process, the barrier synchronization analysis, is the subject of this paper.

Analyzing a program based on data summarized over the whole program often fails to
recognize shifts in the reference pattern to shared data between different (non-concurrent)
phases of the program. The barrier synchronization analysis algorithm addresses this
problem by dividing the program into a set of sequentially executing phases, delineated
by barriers, and computing the flow of control among them. Using the barrier analysis
algorithm to obtain more detailed, per-phase summary information for shared data can
be used, along with static profiling, to detect a dominant sharing pattern in the program
and restructure for that pattern. For example, in one application in our workload the
barrier analysis algorithm revealed that shared structures were accessed on a distinct per-
process basis in all parts of the program except during the final convergence testing. Our
algorithm therefore decided to transform the data by process, according to its dominant
usage. Applying the barrier analysis to the program reduced the false sharing miss rate
by 96% (on average, across multiple block sizes). Excluding it produced a value of only
8% for the same metric.

In the next section we describe our model of parallel programming. Section 3 places the
barrier synchronization algorithm in context by summarizing the algorithms and trans-
formations in our compiler. Section 4 describes the barrier algorithm in detail. Section 5
briefly describes the methodology and workload. Section 6 presents results of using the
barrier algorithm: its ability to detect phases in all programs and its effect on eliminating
false sharing in one. Section 7 discusses related work, and Section 8 concludes.
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2 Model of Parallel Programming

Our compiler is aimed at coarse-grained, explicitly parallel programs for shared memory
multiprocessors, similar to those found in the Stanford SPLASH application suite [20].
The granularity of parallelism in these programs is coarse, on the level of an entire process.

prvate it pid; Work() ( IMartaWro (
hared barrier t MyBarr.i MyBarr2. Myear3; ia (conerged 1.0 ) ( while (moiwerged - 0)

shared int NumProcs; SubPartl(pid); SubParttl(pd);
Si: WaitLarder(&MYBarrl); s4: WaiLBarnwr(&MyVarrl);

for ( pid - 1; pid < NumPrmcs; pid++) Subftr*(pid); SubPart2(pid);

it (fo0() - 0) S2: WaitBardr(&MyVarr2); S5: WaiLBtaridr(&MyWarr2);
WorkO; $3: WaiLBaruier(&MyBanr3); -ved Te.tconverg•dO;
exANO); s6: WaiLBarer(&MyBr3);

I I
MasterWorko;

Figure 1: Example program segments.

In our model the number of processes equals the number of processors and processes do
not migrate. The programs conform to an SPMD model of parallel programming: the
processes all have identical code, but need not take the same path through the program.
They may or may not access different shared data. Processes are created explicitly, e.g.,
using a fork() system call (illustrated in Figure 1). Processes are differentiated by the
values of private variables (pid in Figure 1 is an example) or system calls that return
process identifiers.

Process synchronization is performed using global barriers. When the control flow of a
process reaches a barrier, it must wait until the other participating processes also reach
the barrier. A barrier is global if all the processes in the program participate in the barrier.
On bus-based multiprocessors barriers are commonly implemented using a structure that
contains a shared counter [3]; we call this structure the barrier variable. Upon reaching
the barrier, each process increments the counter and waits until the counter has reached
the preset limit, at which time the counter is reset and the processes continue execution.

3 Enhancing Locality

To determine which data structures in a program are susceptible to false sharing, where
locality may be improved and which transformations to apply at compile time, we ana-
lyze the program and compute an approximation of the memory accesses of each of its
processes. To provide a context for the barrier analysis algorithm, that process is briefly
outlined in the remainder of this section.

The first stage of the analysis is to determine the set of possible control flow paths through
the program that each process may take. The most conservative assumption would be
that every process may take any path through the program. However, in many cases this
vastly overestimates the code that the individual processes may execute and consequently
leads to overly conservative approximations of the processes' memory accesses. We use
information about how the values of private variables, such as pid in Figure 1, vary across
the processes to prune sections of the control flow graph that cannot be executed by the
different processes. Complete details of this analysis may be found in [13].
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The second stage consists of the barrier synchronization analysis algorithm. It divides the
program into a set of non-concurrent phases, so that the sharing pattern for each phase
may be analyzed separately. We discuss the details of this algorithm in section 4.

The third stage of the analysis uses the results from the first two stages to perform
an interprocedural, flow-insensitive, summary side-effect analysis of the code each process
executes in each phase of the program. The side-effect information includes regular section
descriptors [11] to describe the sections of each array that each process accesses '. We have
enhanced the summary s" le-effect analysis in two ways. First, we use static profiling [231
to produce a weighting of the side-effects with respect to estimated execution frequency.
The weighting makes it easier to pinpoint which data structures suffer from false sharing
by eliminating from consideration those that are accessed infrequently. Second, instead of
merging all regular section descriptors for an array into a single descriptor in the summary
information [4, 11], we only merge descriptors when very little or no information will be
lost, or when the number of descriptors for a single array exceeds some small preset limit.
Multiple regular section descriptors allow us to factor out irregula: array access patterns
that occur seldom and do not contribute to false sharing.

In order to eliminate or significantly reduce false sharing misses, data must be restructured
so that (1) data that is only, or overwhelmingly, accessed by one processor is grouped to-
gether, and (2) write-shared data objects with no processor locality [1] do not share cache
lines. We apply three different kinds of transformations, depending on the outcome of
the static analysis. The first transformation groups data physically together by changing
the layout of the target data structures in memory. When it is not possible to physically
change the data layout (because, for example, the affected per-process data structure is
embedded into the elements of a dynamically allocated list or graph data structure), we
can achieve a similar result using the second transformation. It allocates data areas of
memory for each processor, places shared data into them pointed to by pointers that re-
place the shared data in the target data structures. Although this adds a memory access
to each reference of the affected data structures, the accesses are much more likely to be
cache hits rather than invalidation misses. Thus the total amount of time spent to access
the data is less. The third transformation uses padding to prevent affected data items
from residing in the same cache block.

4 Barrier Synchronization Analysis

We define a process segment as the set of statement sequences along all barrier free paths
in the control flow graph that start at one barrier synchronization call site i using barrier
variable b6, which we denote Si,b., and end at another (possibly the same) barrier syn-
chronization call site Si,,b. A process segment is identified by the barrier synchronization
call sites that delimit it, i.e., the above process segment would be denoted (S,,b,, S,,b,). A
phase of a program is the set of process segments that may execute concurrently between
two global barrier synchronization events. The goal of the barrier analysis algorithm is to
divide the program into a set of process segments and partition them into a set of phases.

'A regular section descriptor is a vector of subscript positions in which each element describes the
accessed portion of the array in that dimension as either an invariant expression, a range (giving invariant
expressions for the lower bound, upper bound and stride), or unknown.
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To help explain the algorithm we introduce the notion of a barrier synchronization graph
GB = (VB, EB) for a program. It is a rooted, directed graph, defined as follows:

1. Every vertex v E VB corresponds to the set of process segments T,,b that originate at
the same barrier synchronization call site and terminate at barrier synchronization
call sites that pass the barrier variable b. A dummy start node2 (root vertex) is
inserted to point to the vertices that contain process segments originating from
a conceptual barrier at the beginning of the program. We do not insert an end
barrier, but instead observe that the sections of the program not covered by process
segments make up a separate program phase that ends in program termination.

2. There exists a directed edge (u, v) E EB, if there are process segments (Si,b., Sj,b,) E
T.,6, and (S,,b, S.,b.) E Tvb. such that j = m, i.e., Sj,b5 and S,,b, denote the same
barrier synchronization call site.

Intuitively, the nodes in the gra;,h represent sets of statement sequences of the program
that do not contain barriers (process segments), and the edges represent barrier synchro-
nization events that transfer control flow from one segment to another. The phases of the
program can then be represented as a partition of the vertices all of whose segments can
execute in parallel.

(S.0 (SA). Initially Step I Step 2 Final Set of Phases
Phase A: ((S,1).(S.4)) ((S,l).(S.4)) ((S.1),(S.4)) ((S.1),(S.4))

Phase B: ((1.2)) ((1.2).(4,j)) ((1,2).(4.5)) ((1,2),(4,5))

Phase C: ((2.3)) 1(2,3)) f(23),(5,6)) 1(2,3),(5,6))
Phase D: ((3,1)} ((3,1)) ((3,1)} ((331),(6.4))
Phase E: ((4,5))

(31) (6.4) Phase F: ((5.6)) ((5.6))
Phase G: ((6,4)) 1(6,4)) 1(6,4))

Process Segments = ((S, 1),(S,2,.(1,2).(2.3),(3,I),(4,5).(5,6),(6,4))

Figure 2: Barrier synchronization graph for program in Figure 1. Dashed boxes illustrate phases. Barrier
variables have been left out for reasons of readability.

The results of the barrier synchronization analysis are conservative. If two process seg-
ments are in different phases, they do not execute concurrently. However, the converse
may not be true, i.e., if two process segments are in the same phase, they may, but need
not, execute in parallel.

4.1 Computing the Process Segments

The first stage of the barrier analysis algorithm divides the program into a set of process
segments. For each barrier synchronization call site we compute which other sites can
be reached along barrier free paths in the program. Conceptually we create a variable
Synch Var, for each barrier synchronization call site S, (as opposed to the barrier variable
b, that is passed as a parameter at S.). We then treat each barrier synchronization call
at sitc S,, as the use of its variable SynchVar, followed by the definition of the variables
SynchVar, for all i. The problem reduces to that of computing which SynchVari, are live
at the end of each barrier synchronization call site. (Recall that a variable is live at a point

7For simplicity, this node in not shown in any illustrations of the barrier synchronization graph.
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in a program if its value can be used before it is redefined [2].) Since these conceptual
variables cannot be aliased, an interprocedural solution to this live barrier problem is
possible and tractable (18]. Live barriers can be formulated as a simple distributive
data flow analysis problem [14], for which efficient solutions are known. To speed up
computation, procedures that do not contain any barriers and that do not directly or
indirectly call any procedures containing barriers can be summarized into single nodes
in the program control flow graph (thus avoiding propagating information through each
statement of these procedures) without affecting the accuracy of the solution.

Following the solution to the interprocedural live barrier problem, the process segments
are computed by considering each barrier Si,b, in turn. For each barrier Sj~b, that is live
just after Si.,b, we create the process segment (Sib.b, Sib,).

4.2 Partitioning Process Segments into Phases

The second stage of the barrier analysis algorithm partitions the process segments into
sequentially executing phases. It first optimistically assumes that only process seg-
ments that start at the same barrier and end at barriers that pass the same barrier
variable can execute concurrently. That is, each barrier synchronization call site Si,.
gives rise to phases: ((Si,x,,S 1,, 1),*.., (Si ,. Si,,5 )), ((Si,,,,Sk1,) ... , (Six,,Sk,w2 )) and
( where S,,,, .. , Sj.,y,, Sk,,w,..,Sk, , and S1,,y,,..,S1.,y.

are barrier synchronization calls live at Si,,,. These initial phases correspond to the
vertices of the barrier synchronization graph. Using a work queue approach, the phases
are then selectively merged until no two process segments that may execute in parallel
are contained in different phases.

Initially all phases Pi that contain multiple process segments are put on the work queue.
Each phase 7Pi on the queue is then examined in turn. For each pair of process segments
(S4b,, Skb,), (Sn.b., S.,b,) E Pi, we merge all phases that contain either Sk,by or Sb,s, as the
first barrier in any of their process segments and whose process segments all end in barrier
call sites that pass the same barrier variable. The resulting program phase is added to
the work queue. This continues until the work queue is empty, after which the final set of
phases remain. Phases that contain process segments that terminate at barrier call sites
that pass different barrier variables are never merged.

Figure 2 illustrates how the algorithm works for the program shown in Figure 1. Since the
program has seven barriers (six plus the start barrier), the process segments are initially
partitioned into seven phases, A through G. Initially, only phase A is put on the work
queue, since it is the only phase that contains more than one process segment, specifically
the process segments (S, 1) and (S, 4). As can be seen from the figure, barriers 1 and 4 are
first components of process segments in phases B and E, respectively. Since they both
end at barrier call sites that pass the same barrier variable, they are merged together in
B, which is then added to the work queue. The presence of process segments (1,2) and
(4,5) in B causes phase C and phase F to be merged. Lastly, phase D and G are merged
to produce the final set of phases.
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5 Methodology

The barrier analysis algorithm and our false sharing detection and restructuring algo-
rithms have been implemented as separate passes in Parafrase-2 [191. False sharing re-
ductions were measured using trace-driven simulation of a bus-based, shared memory
architecture. Execution times were measured on a 56-processor Kendall Square Research
KSR1 1151, which has a cache block size of 128 bytes for the purpose of cache coherency.

The workload consisted of five programs, all written in C (Table 1). Water, LocusRoute
and Mp3d are from the Stanford SPLASH benchmarks [20]. Water evaluates the forces
and potentials in a system of water molecules in liquid state; Mp3d solves a problem
involving particle flow at extremely low density; and LocusRoute is a commercial quality
VLSI standard cell router. Topopt [8] performs topological optimization on VLSI circuits
using a parallel simulated annealing algorithm. Maxflow [6] computes the maximum flow
in a directed graph. Mincut [9] partitions a graph using simulated annealing.

6 Results

We present two types of results. The first evaluates the effectiveness of the barrier analysis
algorithm in defining phases and process segments by comparing the number of phases
created by the algorithm to the actual dynamic synchronization behavior of each program.
The second illustrates the usefulness of the algorithm by measuring the reduction in false
sharing for one application.

Program Lines of C Barriers Phases Segments per phase Segments Total
LocusRoute 6709 2 1 2 2
Maxflow 810 6 6 1,1,1,1,1,1 6
Mp3d 1653 6 7 1,1,1,1,1,1,1 7

Topopt 2206 10 5 4, 3, 2, 2, 4 15
Water 1451 6 8 1,1,1,1,1,1,1,1 8

Table 1: Results of applying the barrier analysis algorithm to the benchmarks.

Table 1 summarizes the results of applying our algorithm to each benchmark. The results
are given as the number of phases computed (excluding the termination phase), the num-
ber of process segments for each phase and the total number of process segments (again,
excluding those in the termination phase). Figure 3 shows the barrier synchronization
graphs for each of the benchmarks with the set of phases illustrated by dashed boxes. The
algorithm correctly computes the set of process segments for all benchmark programs. In
addition, it partitions these segments perfectly for all but one of the benchmarks. The
results listed in Figure 3 and Table I show that the algorithm performs flawlessly in divid-
ing LocusRoute (trivially), Maxflow, Mp3d, Topopt and Water into a maximum number
of phases that coincide with the actual dynamic behavior of the programs. That is, for
these programs the results are exact, not conservative.

For Mincut, the large number of cycles of vastly different lengths in the barrier synchro-
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Figure 3: Program phases computed by the barrier synchronization analysis algorithm.

nization graph forces the algorithm to make a conservative approximation of the set of
process segments that can execute concurrently. Because different processes may traverse
different paths through the graph, specifically, different length cycles, they may get "out
of synch" with one another. Thus, any two process segments in that phase could conceiv-
ably execute in parallel. It therefore places all process segments involved in these cycles
into the same phase.

We use the barrier analysis algorithm in the context of a series of algorithms and data
transformations designed to reduce false sharing. When different phases of a program ex-
hibited different memory access patterns, barrier synchronization analysis was extremely
effective in eliminating false sharing. Topopt illustrates this situation.

In the original, untransformed version of Topopt, false sharing caused 60% of all cache
misses, averaged over block sizes between 8 and 256 bytes. Without barrier synchro-
nization analysis shared data restructuring could only eliminate 8% of the false sharing
misses. When barrier analysis was included, false sharing misses dropped an average of
96%. The consequence of eliminating false sharing misses and coherency operations was
an improvement in execution time. When running on the KSR1, transformations reduced
the execution time for Topopt by 15% when barrier synchronization analysis was included
in the false sharing analysis, versus only 5% when it was not.

For the other benchmarks in our workload the impact was more modest. They fell into
one of three categories. First, LocusRoute exhibited very little false sharing originally
and therefore had very little room for improvement. Second, Mincut, Mp3d and Water
suffered from more false sharing, but the analysis without the barrier analysis algorithm
eliminated almost all of it. Third, for Maxflow the side-effect an Aysis concluded that the
data structures should be left untransformed.

7 Related Work

Related work primarily concentrates on analyzing event variable synchronization to de-
tect race conditions in parallel programs for the purpose of debugging, as opposed to
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compile time program optimization. Their analysis is mainly focused on event variable
synchronization, i.e., post and wait or locks, and few show experimental results attesting
to the effectiveness of their algorithms. Taylor [21] presents an algorithm that analyzes
rendezvous in concurrent Ada programs and is exponential in the number of tasks in
the program. The algorithm computes the set of possible concurrency states for a pro-
gram and determines the possible sequences in which they may occur. McDowell [17],
and Helmbold and McDowell [12] also enumerate possible concurrency states, but present
techniques to reduce the number of states. The worst case number of states remains su-
perpolynomial, however. Callahan, Kennedy and Subhlok [5] uses a synchronized control
flow graph to determine when possible race conditions exist in parallel programs. Their
model of parallel programming is based on parallel case and parallel do constructs, and
their analysis is focused on loop nests. Our model of parallel programming is based on
process level parallelism, and we perform our analysis over the entire program.

Masticola and Ryder [16] present a framework for non-concurrency analysis of Ada tasks.
Using four refinement strategies they apply iteration to conservatively approximate which
basic blocks cannot execute concurrently. Our algorithm has some similarity to their
strategy of pinning; however, there are some key differences. First, they concentrate
on pairwise process synchronization, while we address global process synchronization.
Second, our solution is applicable to programs written under a different model of parallel
programming. Finally, our algorithm is simpler and therefore more efficient.

8 Summary

We have presented a simple and efficient algorithm that statically analyzes the barrier
synchronization pattern of coarse-grained, explicitly parallel programs. It uses a version
of live variable analysis to divide each program up into a set of process segments, and
by selectively merging vertices in the barrier synchronization graph, partitions these into
non-concurrent program phases.

The algorithm performs well in computing the phases between barriers in parallel pro-
grams. Out of our six benchmarks, it produced a solution identical to the actual barrier
synchronization pattern of each program in all but one case. For the last program the
result was a conservative but safe approximation to the dynamic barrier synchronization
pattern.
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Abstract: We describe an approach to parallel compilation that seeks to harness
the vast amount of fine-grain parallelism that is exposed through partial evaluation of
numerically-intensive scientific programs. We have constructed a parallelizing compiler
which uses partial evaluation to break down data abstractions and program structure,
producing huge basic blocks that contain large amounts of fine-grain parallelism. To
utilize this parallelism, we have developed a technique for automatically mapping the fine
grain parallelism onto a coarser grain parallel computer architecture. We selectively group
the fine-grain operations together so as to adjust the parallelism grain-size to match the
inter-processor communication capabilities of the target architecture. On an important
scientific problem, code produced by our compiler for the Supercomputer Toolkit parallel
computer runs 6.2 times faster on eight processors than on one. For an important class of
scientific applications, the coupling of partial evaluation with static scheduling techniques
eliminates the need to require programmers to obscure programs by manually exposing
the parallelism implicit in a computation.
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Keywords: Parallel Compilation; Partial Evaluation; Parallel Instruction Scheduling;
Fine-grain Parallelism

1 Introduction

Previous work has shown that partial evaluation is good at bieaking down data abstrac-
tion and exposing underlying fine-grain parallelism in a program [3). We have written a
novel compiler which couples partial evaluation with static scheduling techniques to ex-
ploit this fine-grain parallelism by automatically mapping it onto a coarse-grain parallel
architecture.

Partial evaluation eliminates the barriers to parallel execution imposed by the data
representation and the control structure of a program by taking advantage of information
about the particular problem a program will be used to solve. For example, partial
evaluation is able to perform at compile-time most data structure references, procedure
calls, and conditional branches related to data structure size, leaving mostly numerical
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computations to be performed at run time. Partial evaluation is particularly effective on
numerically-oriented scientific programs, since they tend to be mostly data-independent,
meaning that they contain large regions in which the operations to be performed do not
depend on the numerical values of the data being manipulated. For instance, matrix
multiplication performs the same set of operations, regardless of the particular numerical
values of the matrix elements. We use partial evaluation to produce huge basic blocks from
these data-independent numerical regions. These basic blocks often contain thousands of
instructions, two orders of magnitude larger than the basic blocks that typically arise
in high-level language programs. To benefit from the fine-grain parallelism contained in
these huge basic blocks, we schedule the partially-evaluated program for parallel execution
primarily by performing the operations within an individual basic block in parallel.

In order to automatically map the freshly derived fine-grain parallelism onto a mul-
tiprocessor, we developed a technique which coarsens the dataflow graph by selectively
aggregating operations together. This technique uses heuristics which take the commu-
nication bandwidth, inter-processor communication latency, and processor architecture
all into consideration. High inter-processor communication latency requires that there
be enough parallelism available to allow each processor to continue to initiate operations,
even while waiting for results produced elsewhere to arrive. Limited communication band-
width severely restricts the parallelism grain size that may be utilized by requiring that
most values used by v processor be produced on that processor, rather than being received
from another proc. ýor. Our approach addresses these problems by tailoring the grain
size adjustment and scheduling heuristics to match the communication capabilities of the
target architecture.

Our compiler operates in four major phases. The first phase performs partial evalu-
ation, followed by traditional compiler optimizations, such as constant folding and dead-
code elimination. The second phase analyzes locality constraints within each basic block,
locating operations that depend so closely on one another that it is clearly desirable that
they be computed on the same processor. These closely related operations are grouped
together to form a higher grain size instruction, known as a region. The third compilation
phase uses heuristic scheduling techniques to assign each region to a processor. The final
phase schedules the individual operations for execution within each processor, accounting
for pipelining, memory access restrictions, register allocation, and final allocation of the
inter-processor communication pathways.

The target architecture of our compiler is the Supercomputer Toolkit , a parallel pro-
cessor consisting of eight independent VLIW processors connected to each other by two
shared communication busses [5). Performance measurements of actual compiled pro-
grams running on the Supercomputer Toolkit show that the code produced by our compiler
for an important astrophysics application[18] runs 6.2 times faster on an eight-processor
system than does near-optimal code executing on a single processor. The compilation
process of this real world application is used as an example throughout this paper.

2 The Partial Evaluator

Partial evaluation converts a high-level, abstractly written, general purpose program into a
low-level program that is specialized for the particular application at hand. For instance,
a program that computes force interactions among a system of N particles might be
specialized to compute the gravitational interactions among 5 planets of our particular
solar system. This specialization is achieved by performing in advance, at compile time,
all operations that do not depend explicitly on the actual numerical values of the data.
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Operation Level Parallelism Profile Cycles Table 1: The numerical operations in the 9-body

program were divided into regions based on local-
Figure 1: Parallelism profile of the 9-body prob- ity. This table shows how region size can vary de-
lem. This graph represents all of the parallelism pending on the locality structure of the computa-
available in the problem, taking into account the tion. Region size is measured by computational Ia-
varying latency of numerical operations. tency (cycles). The program was divided into 292

regions, with an average region size of 7.56 cycles.
BC The maximal region size used was 43 cycles
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Figure 2: A Simple Region Forming Heuris-
tic. A region is formed by grouping together oper-
ations that have a simple producer/consumer rela- I 48 2 16 224 28 32 4 U 52 •6

Heuristic Limted(no size limit imposed) Cycles
tionship. This process is invoked repeatedly, with Pallelism profile

the region growing in size as additional producers
are added. The region-growing process terminates Figure 3: Parallelism profile of the 9-body prob-

when no suitable producers remain, or when the lem after operations have been grouped together

maximum region size is reached. A producer is to form regions. Comparison with Figure 1 clearly

considered suitable to be included in a region if it shows that increasing the grain-size significantly

produces its result solely for use by that region. reduced the opportunities for parallel execution.

(The numbers shown within each node reflect the The maximum speedup factor dropped from 69 to

computational latency of the operation.) 49 times faster than a single processor execution.
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Many data structure references, procedure calls, conditional branches, table lookups,
loop iterations, and even some numerical operations may be performed in advance, at
compile time, leaving only the underlying numerical operations to be performed at run
time

Our compiler exposes fine-grain parallelism using a simple partial evaluation strategy
based on a symbolic execution technique described in [4, 3].1 Despite this technique's sim-
plicity, it works well at exposing fine-grain parallelism. Figure 1 illustrates a parallelism
profile analysis of the nine-body gravitational attraction problem of the type discussed
in [18).2 Partial evaluation exposed so much low-level parallelism that in theory, parallel
execution could speed up the computation by a factor of 69 over a uniprocessor.

3 Adjusting the Grain Size

Searching for an optimal schedule for a program which exploits fine-grain parallelism is
both computationally expensive and difficult to achieve. Rather than do an exhaustive
search for the optimal schedule, we developed a heuristic technique to coarsen the exposed
fine-grain parallelism to a grain size suitable for critical-path based static scheduling.
Prior to initiating critical-path based scheduling, we perform locality analysis that groups
together operations that depend so closely on one other that it would not be practical
to place them in different processors. Each group of closely interdependent operations
forms a larger grain size macro-instruction, which we refer to as a region.3 Some regions
are large, while others may be as small as one fine-grain instruction. In essence, grouping
operations together to form a region is a way of simplifying the scheduling process by
deciding in advance that certain opportunities for parallel execution will be ignored due
to limited communication capabilities.

Since operations within a region will occur on the same processor, the maximum region
size must be chosen to match the communication capabilities of the target architecture.
For instance, if regions are permitted to grow too large, a single region might encompass
the entire data-flow graph, forcing the entire computation to be performed on a single
processor! Although strict limits are therefore placed on the maximum size of a region,
regions need not be of uniform size. Indeed, some regions will be large, corresponding
to localized computation of intermediate results, while others will be quite small, corre-
sponding to results that are used globally throughout the computation.

We have experimented with several different heuristics for grouping operations into
regions. The optimal strategy for grouping instructions into regions varies with the ap-
plication and with the communication limitations of the target architecture. However,
we have found that even a relatively simple grain size adjustment strategy dramatically
improves the performance of the scheduling process. As illustrated in Figure 2, when a
value is used by only one instruction, the producer and consumer of that value may be
grouped together to form a region, thereby ensuring that the scheduler will not place the

1More complex partial evaluation strategies that address data-dependent computations may be found
in [9, 11, 10].

2Specifically, one time-step of a 12th-order Stormer integration of the gravity-induced motion of a
9-body solar system.

3The name region was chosen because we think of the grain size adjustment technique as identifying
"regions" of locality within the data-flow graph. The process of grain size adjustment is closely related
to the problem of graph multisection, although our region-finder is somewhat more particular about the
properties (shape, size, and connectivity) of each "region" sub-graph than are typical graph multisection
algorithms.
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producer and consumer on different processors in an attempt to use spare cycles wher-
ever they happened to be available. Provided that the maximum region size is chosen
appropriately,4 grouping operations together based on locality prevents the scheduler from
making gratuitous use of the communication channels, forcing it to focus on scheduling
options that make more effective use of the limited communication bandwidth.

An important aspect of grain size adjustment is that the grain size is not increased
uniformly. As shown in Table 1, some regions are much larger than others. Indeed, it is
important not to forcibly group non-localized operations into regions simply to increase
the grain size. For example, it is likely that the result produced by an instruction that has
many consumers will be transmitted amongst the processors, since it is not practical to
place all of the consumers on the result-producing processor. In this case, creating a large
region by grouping together the producer with only some of the consumers increases the
grain size, but does not reduce inter-processor communication, since the result would need
to be transmitted anyway. In other words, it only makes sense to limit the scheduler's
options by grouping operations together when doing so will clearly reduce inter-processor
communication.

4 Parallel Scheduling
Exploiting locality by grouping operations into regions forces closely-related operations
to occur on the same processor. Although this reduces inter-processor communication
requirements, it also eliminates many opportunities for parallel execution. Figure 3 shows
the parallelism remaining in the 9-body problem after operations have been grouped
into regions. Comparison with Figure 1 shows that increasing the grain size eliminates
about half of the opportunities for parallel execution. The challenge facing the parallel
scheduler is to make effective use of the limited parallelism that remains, while taking
into consideration such factors as communication latency, memory traffic, pipeline delays,
and allocation of resources such as processor buses and inter-processor communication
channels.

Our compiler schedules operations for parallel execution in two phases. The first phase,
known as the region-level scheduler, is primarily concerned with coarse-grain assignment
of regions to processors, generating a rough outline of what the final program will look
like. The region-level scheduler assigns each region to a processor; determines the source,
destinations, and approximate time of transmission of each inter-processor message; and
determines the preferred order of execution of the regions assigned to each processor. The
region-level scheduler takes into account the latency of numerical operations, the inter-
processor communication capabilities of the target architecture, the structure (critical
path) of the computation, and which data values each processor will store in its mem-
ory. The region-level scheduler does not concern itself with finer-grain details such as
the pipeline structure of the processors, the detailed allocation of each communication
channel, or the ordering of individual operations within a processor. At the coarse grain
size associated with the scheduling of regions, a straightforward set of critical-path based
scheduling heuristics5 have proven quite effective. For the 9-body problem example, the

4 The region size must be chosen such that the computational latency of the operations grouped
together is well-matched to the communication bandwidth limitations of the architecture. If the regions
are made too large, communication bandwidth will be under utilized since the operations within a region
do not transmit their results.

5 The heuristics used by the region-level scheduler are closely related to list-scheduling [131. A detailed
discussion of the heuristics used by the region-level scheduler is presented in 11].
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computational load was spread so evenly that the variation in utilization efficiency among
the 8 processors was only one percent.

The final phase of the compilation process is instruction-level scheduling. The region-
level scheduler provides the instruction-level scheduler with an ordered list of regions to
execute on each processor along with a list of results that need to be transmitted when
they are computed. The instruction-level scheduler chooses the final ordering of low-level
operations within each processor, taking into account processor pipelining, register al-
location, memory access restrictions, and availability of inter-processor-communication
channels. Whenever possible, the order of operations is chosen so as to match the prefer-
ences of the region-level scheduler, represented by the ordered list of regions. However, the
instruction-level scheduler is free to reorder operations as needed, intertwining operations
among the regions assigned to a particular processor, without regard to which coarse-grain
region they were originally a member of. This strategy allows the instruction scheduler to
maintain a schedule similar to the one suggested by the region scheduler, thereby ensur-
ing that the results will be produced at approximately the time that other processors are
expecting them, while still taking advantage of fine grain parallelism available in other
regions to fill pipeline slots as needed.

The instruction-level scheduler derives low-level pipelined instructions for each proces-
sor, choosing the exact time and communication channel for each inter-processor transmis-
sion, and determining where values will be stored within each processor. The instruction-
level scheduling process begins with a data-use analysis that determines which instructions
share data values and should therefore be placed near each other for register allocation
purposes. This data-use information is combined with the higher-level ordering prefer-
ences expressed by the region-level scheduler, producing a scheduling priority for each
instruction. The instruction scheduling process then proceeds one cycle at a time, per-
forming scheduling of that cycle on all processors before moving on to the next cycle.
Instructions compete for resources based on their scheduling priority; in each cycle, the
highest-priority operation whose data and processor resources are available will be sched-
tiled. This competition for data and resources helps to keep each processor busy, by
scheduling low-priority operations whose resources are available whenever the resources
for higher priority computations are not available. Indeed, when the performance of the
instruction-scheduler is measured independently of the region-level scheduler, by gener-
ating code for a single Supercomputer Toolkit VLIW processor, utilization efficiencies in
excess of 99.7% are routinely achieved, representing nearly optimal code.

An aspect of the scheduler that has proven to be particularly important is the retroac-
tive scheduling of memory references. Although computation instructions (such as +
or *) are scheduled on a cycle-by-cycle basis, memory LOAD instructions are scheduled
retroactively, wherever they happen to fit in. For instance, when a computation instruc-
tion requires that a value be loaded into a register from memory, the actual memory
access operation' is scheduled in the past for the earliest moment at which both a reg-
ister and a memory-bus cycle are available; the memory operation may occur fifty or
even one-hundred instructions earlier than the computation instruction. Supercomputer
Toolkit memory operations must compete for bus access with inter-processor messages, so
retroactive scheduling of memory references helps to avoid interference between memory
and communication traffic.

sOn the toolkit architecture, two memory operations may occur in parallel with computation and
address-generation operations. This ensures that retroactively scheduled memory accesses will not inter-
fere with computations from previous cycles that have already been scheduled.
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Figure 4 illustrates the effectiveness of the instruction level scheduler on the nine-
body problem example.

5 Performance Measurements

The Supercomputer Toolkit and our associated compiler have been used for a wide variety
of applications, ranging from computation of human genetic pedigrees io the simulation
of electrical circuits. The applications that have generated the most interest from the
scientific community involve various integrations of the N-body gravitational attraction
problem.7 Parallelization of these integrations has been previously studied by Miller171,
who parallelized the program by using futures to manually specify how parallel execution
should be attained. Miller shows how one can re-write the N-body program so as to
eliminate sequential data structure accesses to provide more effective parallel execution,
manually performing some of the optimizations that partial evaluation provides autu-
matically. Others have developed special-purpose hardware that parallelizes the 9-body
problem by dedicating one processor per planet.[16] Previous work in partial evaluation
[2, 4, 3] has shown that the 9-body problem contains large amounts of fine-grain par-
allelism, suggesting that more subtle parallelizations are possible without the need to
dedicate one processor to each planet.

We have measured the effectiveness of coupling partial evaluatior with grain size ad-
justment to generate code for the Supercomputer Toolkit parallel computer, an ar-hi-
tecture that suffers from serious inter-processor communication latency and bandwidth
limitations. Table 2 shows the parallel speedups achieved by our compiler for several
different N-body interaction applications. Figure 5 focuses on the 9-body program (ST9)
discussed earlier in this paper, illustrating how the parallel speedup varies with the num-
ber of processors used. Note that as the number of processors increases beyond 10, the
speedup curves level off. A more detailed analysis has revealed that this is due to the
saturation of the inter-processor communication pathways, as illustrated in Figure 6 The
accuracy of these results was verified by executing the 9-body program on the actual
Supercomputer Toolkit hardware in an eight processor configuration.

An important drawback to the partial evaluation approach is that it results in the
unrolling of loops, which can potentially le id to an explosion in the size of the compiled
program. We have found that depending on the size of the data set being manipulated.
partial evaluation may reduce the overall size of the program, by eliminating data accesses,
branches, and abstraction-manipulation code; or partial evaluation may increase the size
of the program by iterating over a large data set. The key to making successful use of the
partial evaluation technique is to not carry it too far. For relatively small applications,
such as the 9-body integration program, it was practical to partially-evaluate the entire
computation; on the other hand, if one was simulating a galaxy containing millions of stars,
it would probably be best not to partially-evaluate some of the outermost loops! Our work
focuses on achieving efficient parallel execution of the partially-evaluated segments of a
program, leaving the decision of which portions of a program should be subjected to this
compilation technique up to the programmer.

7For instance, [18] describes results obtained using the Supercomputer Toolkit that prove that the solar
system's dynamics are chaotic.
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6 Related Work
The use of partial evaluation to expose parallelism makes our approach to parallel compi-
lation fundamentally different from the approaches taken by other compilers. Tradition-
ally, compilers have maintained the data structures and control structure of the original
program. For example, if the original program represents an object as a doubly-linked
list of numbers, the compiled program would as well. Only through partial evaluation
can the data structures used by the programmer to think about the problem be removed,
leaving the compiler free to optimize the underlying numerical computation, unhindered
by sequentially-accessed data structures and procedure calls. However, the drawback to
the partial-evaluation approach is that it is only highly efffective for applications that are
mostly data-independent.

Many compilers for high-performance architectures use program transformations to
exploit low-level parallelism. For instance, compilers for vector machines unroll loops
to help fill vector registers. Other parallelization techniques include trace-scheduling,
software pipelining, vectorizing, as well as static and dynamic scheduling of data-flow
graphs.

6.1 Trace Scheduling

Compilers that exploit fine-grain parallelism often employ trace-scheduling techniques [14]
to guess which way a branch will go, allowing computations beyond the branch to occur
in parallel with those that precede the branch. Our approach differs in that we use
partial evaluation to take advantage of information about the specific application at hand,
allowing us to totally eliminate many data-independent branches, producing basic blocks
on the order of several thousands of instructions, rather than the ten to thirty instructions
typically encountered by trace-scheduling based compilers. An interesting direction for
future work would be to add trace-scheduling to our approach, to optimize across the
data-dependent branches that occur at basic block boundaries.

Most trace-scheduling based compilers use a variant of list-scheduling[13] to parallelize
operations within an individual basic block. Although list-scheduling using critical-path
based heuristics is very effective when the grain size of the instructions is well-matched
to inter-processor communication bandwidth, we have found that in the case of limited
bandwidth, a grain size adjustment phase is required to make the list-scheduling approach
effective.

8

6.2 Software Pipelining

Software Pipelining [12] optimizes a particular fixed size loop structure such that several
iterations of the loop are started on different processors at constant intervals of time. This

8The partial-evaluation phase of our compiler is currently not very well automated, requiring that
the programmer provide the compiler with a set of input data structures for each data-independent
code sequence, as if the data-independent sequences are separate programs being glued together by the
data-dependent conditional branches. This manual interface to the partial evaluator is somewhat of an
implementation quirk; there is no reason that it could not be more automated. Indeed, several Supercom.
puter Toolkit users have built code generation systems on top of our compiler that automatically generate
complete programs, including data-dependent conditionals, invoking the partial evaluator to optimize
the data-independent portions of the program. Recent work by Weise, Ruf, and Katz[9, 10] describes
additional techniques for automating the partial-evaluation process across data-dependent branches.
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increases the throughput of the computation. The effectiveness of software pipelining
will be determined by whether the grain size of the parallelism expressed in the looping
structure employed by the programmer matches the archIitecture: software pipelining can
not parallelize a computation that has its parallelism hidden behind inherently sequential
data references and spread across multiple loops. The partial-evaluation approach on
such a loop structure would result in the loop being compietely unrolled with all of
the sequential data structure references removed and all of the fine grain parallelism in
the loop's computation exposed and available for parallelization. In some applications,
especially those involving partial differential equations, fully unrolling loops may generate
prohibitively large programs. In these situations, partial evaluation could be used to
optimize the innermost loops of a computation, with techniques such as software pipelining
used to handle the outer loops.

6.3 Vectorizing

Vectorizing is a commonly used optimization for vector supercomputers, executing oper-
ations on each vector element in parallel. This technique is highly effective provided
that the computation is composed primarily of readily identifiable vector operations
(such as dot-product). Most vectorizing compilers generate vector code from a scalar
specification by recognizing certain standard looping constructs. However, if the source
program lacks the necessary vector-accessing loop structure, vectorizing performs very
poorly. For computations that are mostly data-independent, the combination of partial
evaluation with static scheduling techniques has the potential to be vastly more effec-
tive than vectorization. Whereas a vectorizing compiler will often fail simply because
the computation's structure does not lend itself to a vector-oriented representation, the
partial-evaluation/static scheduling approach can often succeed by making use of very fine-
grained parallelism. On the other hand, for computations that are highly data-dependent,
or which have a highly irregular structure that makes unrolling loops infeasible, vectorizing
remains an important option.

6.4 Iterative Restructuring

Iterative restructuring represents the manual approach to parallelization. Programmer's
write and rewrite their code until the parallelizer is able to automatically recognize and
utilize the available parallelism. There are many utilities for doing this, some of which
are discussed in [15]. This approach is not flexible in that whenever one aspect of the
computation is changed, one must ensure that parallelism in the changed computation is
fully expressed by the loop and data-reference structure of the program.

6.5 Static Scheduling

Static scheduling of the fine-grained parallelism embedded in large basic blocks has also
also been investigated for use on the Oscar architecture at Waseda University in Japan.[6].
The Oscar compiler uses a technique called task fusion that is similar in spirit to the grain
size adjustment technique used on the Supercomputer Toolkit. However, the Oscar com-
piler lacks a partial-evaluation phase, leaving it to the programmer to manually generate
large basic blocks. Although the manual creation of huge basic blocks (or of automated
program generators) may be practical for computations such as an FFT that have a
very regular structure, it is not a reasonable alternative for more complex programs that
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require abstraction and complex data structure representations. For example, imagine
writing out the 11,000 floating-point operations for the Stormer integration of the Solar
system and then suddenly realizing that you need to change to a different integration
method. The manual coder would grimace, whereas a programmer writing code for a
compiler that uses partial evaluation would simply alter a high-level procedure call.

7 Conclusions

Partial evaluation has an important role to play in the parallel compilation process, es-
pecially for largely data-independent programs such as those associated with numerically-
oriented scientific computations. Our approach of adjusting the grain size of the compu-
tation to match the architecture was possible only because of partial evaluation: If we
had taken the more conventional approach of using the structure of the program to detect
parallelism, we would then be stuck with the grain size provided us by the programmer.
By breaking down the program structure to its finest level, and then imposing our own
program structure (regions) based on locality of reference, we have the freedom to choose
the grain size to match the architecture. The coupling of partial evaluation with static
scheduling techniques in the Supercomputer Toolkit compiler also eliminates the need to
write programs in an obscure style that makes parallelism more apparent.
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abstract: Vector multiprocessors rely on both spatial and temporal parallelism for
achieving significant speedup. For singly nested loops, we study the effect on the speedup
of: 1) loop fusion and, 2) increasing the granule-size of parallel-vector loops using extracted
statements from scalar loops. The proposed optimizations migrate vector statements from
one loop to another, create new loops, and reduce others. Loops and statements that
belong to strongly connected data paths are vertically fused, whenever possible, in order
to promote chaining and cache/register reuse. To reduce loop synchronization, horizontal
fusion is also used for independent loops having compatible dependence types. Finally,
vector operations are scheduled based on knowledge of the timing of arithmetic pipelines,
load/store operations, and management of the available resource.

Testing is carried out using synthetic Fortran programs on the Convex C240 vector
multiprocessor. The proposed loop fusion improves the speedup by 18% to 43% over the
C240 commercial optimizing compiler. Chaining-oriented scheduling and allocation yields

9% to 15% improvement over the highest optimization option of the C240 compiler.

1 Introduction

Research of the last decade has generated impressive improvements [13] in the design of

parallel vector-processors (VPs), due primarily to decreasing cycle time, the use of faster
pipelined memories, and the increasing number of VPs.

Restructuring compilers such as Parafrase [121, PFC [1], UFTN [61 or, V-Pascal 1141
perform data dependence analysis of loops in order to classify them depending on their

inherent parallelism. Scalar loops (SL) are the least reduceable because of their tight
recurrences. Techniques for extracting parallelism out of SL loops have been developed
based on recurrence analysis [8]. For example, Cycle Shrinking [13] and Graph Traverse
Scheduling (21 split the loop iteration range into independent or synchronized partitions
which can run in parallel.

Loop fusion has been considered [51 as an optimization method for compiling programs
targeted to distributed-memory systems. Loop fusion simplifies [10, 11] data partitioning
and allows increasing memory reuse. Loop fusion, however, has not been utilized heavily
with vector multiprocessors.
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Vectorizing compilers support operators to extract parallelism from loops that are
primarily classified as scalar or having limited parallelism. Unfortunately, the extracted
parallelism is distributed only out of the original loop. The work presented in this paper is
based on the use of known techniques for extracting parallelism but with the objective of
reducing the granule size of some scalar loops, fusing loops, forming new loops, or migrat-
ing statements from one loop to another whenever possible. With this approach, vector
scheduling is proposed in order to exploit the locality of data producers and consumers
that results from fusion. Scheduling vector operations is based on the use of an accurate
model and timing of the underlying vector processor. The benefits are an increase of
the granule size of parallel vector loops at the expense of scalar loops, increasing reuse of
cache memory and vector registers, improved chaining, and reduced loop synchronization.
The approach has been tested on the Convex C240 mainframe.

This paper is organized as follows. Section 2 presents our approach to loop distribution
and fusion. Loop scheduling for the Convex C240 is developed in Section 3. Resolving
conflicts due to register and data path allocations is presented in Section 4. Section 5
presents the evaluation of this work and Section 6 concludes about this work.

2 Loop Distribution and Fusion
Our objective is to investigate the benefit of fusing loops and statements following the
extraction of parallelizable computations out of loops that are primarily classified as
scalar loops. We do not search to extract all the parallelism out of such loops. There are
many approaches to exploit most of the inherent parallelism in loops [12, 13, 15]. The
effectiveness of the gained speedup is necessarily dependent on the reduction factor, the
granule size of the loop, and the amount of needed synchronization.

In the following we present an algorithm called Distribute for reducing the granule
size of loops that are primarily classified as scalar loops. Algorithm Distribute classifies
loops into a number of categories depending on the amount of available parallelism and
synchronization needed to generate correct results. The algorithm for distributing loops
can be summarized by the following steps:

1. A loop L is classified as loop-independent-dependency (LID) if L does not carry
dependency from one iteration to another but dependency may occur across the
references of the same iteration. This is true when every pair of references r, and
r2 of L satisfy lcd(rl, r2 ) = 0, where lcd(rl, r2) is the loop-carried-dependency test.
The test lcd(rl, r 2) yields true value only when r, is referenced in some iteration and
assigned in another iteration. An Lid loop can be strip-mined to generate a parallel
vector loop (PVL). If this step succeeds in classifying L as an Lid, then processing
of L terminates and processing of the next loop L' is started.

2. Loop L could be partitioned into a number of Llid loops and one reduced L14
loop if some expressions of L are only involved in LID dependence which enables
distributing each of these expressions out of the original LCD loop. In other terms,
there is no reference ri E LId for which there exists another reference r 2 E L such
that lcd(rl, r2) = 1, where both r, and r 2 reference the same array. Each synthetized
L1Id loop will be formed by one expression that is free of LCD dependencies. Based
on data producer-consumer relationships, any resulting Llid loop should either be
predecessor or successor with respect to the remaining Lim loop in the corresponding
dataflow graph.
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3. Partial vectorization (PV) is attempted in order to reduce the granule size of the cur-
rent Lied loop. PV consists of distributing parallelizable and vectorizable statements
out of LCD vector expressions. The distributed statements should not be involved
in LCD dependence with the remaining expressions of the same loop. Temporary
arrays are used to store the results of the distributed statements that become prede-
cessors to their original LCD expressions in the dataflow graph. PV may generates
an arbitrary number of LI,d loops that will be classified as PVL.

4. A reduction is detected whenever two references r, and r 2 of one expression reference
a scalar or array with lcd(ri, r2 ) = 0 and r, is used prior to storing a computed
value into r2 . A reduction operation can be vectorized by using dedicated vector
accumulator, vector compress and merge, thus, leading to a parallel vector loops
with dedicated code (PVLD).

5. The remaining Ljd could be partitioned into a backward-LCD (B-LCD) and a
forward-LCD (F-LCD). A F-LCD exists when one iteration references a value that
will be assigned in a later iteration. This can be determined by using a write-after-
read (war(r 1 ,r 2) = 1) test which can be combined with lcd(rl,r 2) = 1 to indicate
thc presence of B-LCD dependency between rl and r 2. An F-LCD loop does not
prevent vectorization because a write-after-read dependence proceeds in the correct
order when executed on a vector pipeline. Because some iteration boundaries can
concurrently proceeds across the processors, F-LCD loops cannot be safely paral-
lelized without adding synchronization to guarantee correct results. A distributed
F-LCD loop is labelled as parallel vector loops with synchronization (PVLS). The
remainder of the original loop is Ljed with a B-LCD dependence type.

6. Two expressions for which there is a B-LCD dependence can be interchanged if the
result generated in one expression is not used in evaluating the second expression
and no other dept..dence is violated. Although, s, and s2 can be involved in B-
LCD dependence they can be interchanged without altering the results if s2 does
not reference the computed value of sj. If s, and S2 are not involved in other
dependence, expressions s, and S2 can then be distributed out of the current Lid
loop and two new loops can be created.

7. The remaining unreduceable B-LCD loop generally cannot be vectorized nor paral-
lelized which leads to a scalar loop (SL) that should be executed in sequence.

Following the above analysis the program is represented by a data dependence graph
(DDG) in which the nodes represent loops of type SL, PVLD, or PVLS or simply loops
of type PVL. The method used for loop fusion is based on vertical and horizontal fusion:

1. Vertical fusion: statements or loops of the same type and with the same headers
which belong to a dependence path are fused whenever possible. Using the previ-
ously generated loop labeling, fusing condition for PVL or PVLS loops is examined
in order to ensure preserving the loop type of the fused loop. Fusion is not per-
formed if the fused loop could contain: 1) F-LCD (prevent parallelization), or 2)
B-LCD (fusion preventing).

2. Horizontal fusion: data independent loops or statements having the same types and
loop counts are also fused in order to reduce synchronization and loop overhead.
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do i=l,n
sl: a(i)=a(i-1)+b(i)*c(i)
s2: e(i)=c(i)-b(i)
s3: sum=sum+a(i)*sqrt(e(i))

enddo

Figure 1: Example of a loop carrying a B-LCD

do i=l,n (Parallel-vector loop)
s2: e(i)=c(i)-b(i)
s3": t2(i)=sqrt(e(i))
sl': tl(i)= b(i)*c(i)

enddo
do i=l,n (Scalar loop)

sl: a(i)=a(i-1)+ti(i)
enddo
do i=l,n (Parallel-vector loop)

s3': t3(i)= a(i) * t2(i)
enddo
do i=l,n (Add-reduce loop)

s3: sum=sum+t3(i)
enddo

Figure 2: Output program following Distribution/Fusion

Analysis of conditions that prevent loop fusion can be found in [15]. Loop boundaries
in the output program are mainly those corresponding to loops with different types,
different loop counts, or same type but with fusion preventing condition.

We examine the program shown in Figure 1 as an example _f distributing and fusing
loops. The loop has an LCD with respect to references a(i) and a(i - 1) which indicates
that Step 1 of Distribute fails. In Step 2, s2 is distributed out of the original loop. In
Step 3, PV distributes statements sl' : tl(i) = b(i) * c(i), s3" : t2(i) = sqrt(e(i)), and
s3' : t3(i) = a(i) * t2(i) out of the the original LCD loop, where sl', s3', and s3" are
identifiers for the three new statements. Statements sl', s3', and s3" are labeled as PVL
loops because they are free of LCD dependencies. The previous statements sl and s3 are
then reduced to sI : a(i) = a(i - 1) + tl(i) and s3 : sum = sum + t3(i) as a result of the
previous partial vectorization. Step 4 finds the reduction that is present in s3 and creates
a new loop for s3 that is labeled PVLD. The remaining LCD loop is reduced to sI. Step
5 indicates that sl is a B-LCD and there is no F-LCD. Step 6 fails because the B-LCD
loop is formed by one single expression sl that is labeled as SL loop.

The resulting data dependence graph has four levels: 11 = {sl', s2}, 12 = {sl, s3"},
13 = {s3'}, and 14 = {s3}. The dependence edges are: (sl' --+ sl), (s2 -- s3"), (sl, 83"
s3'), and (s3' -* s3).

Vertical fusion leads to fuse expressions s2 and s3". As sl is SL and s2 is LID,
horizontal fusion inserts then term sl' within loop (s2,s3") that becomes (sl',s2,s3").
The type of s3' is different from that of sl or s3. The above three loops remain separate
as shown in Figure 2.
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3 Loop Scheduling

The traditional approaches [7, 9] are based jn the use of reservation tables that result
from gross estimating the functiknal unit (Fus) times as one or more units of times
and scheduling the vector operations. Resolving problems with respect to memory load
and store operations, resource availability, and resource allocation is done in a separate
step. The result is that isolating the above constraints from the first step leads schedule
makespan to be excessively increased by adding delays for resolving the various register
and data-path constraints in the final step.

Our approach consists of early incorporation of all the available constraints by schedul-
ing the load/store and arithmetic operations over the Fus based on accurate timing of
the VP and the management of the available resources during scheduling. This results in
a conflict-free schedule with respect to Fus, memory utilization, and resource availability.
The schedule generated is used to resolve the problem of register and data-path allocation.
This consists of resolving conflicting allocation of registers and data-paths by minimizing
the additional delays to be incorporated in the original schedule.

The vector processor unit of C240 [7, 4] has the following vector pipelines (Fus): 1)
concurrent vector load (M,,t) and store (Mi,), 2) add and logical (Ful), 3) multiply and
divide (Ful), and 4) merge/compress and conditional pipes. Any of the four register bank
outputs can route vector data to any of three functional pipelines inputs. The functional
unit (Fu) output and Mut can be routed to any of the register bank inputs. Each bank
has two vector registers but only one bank input.

In the following we investigate evaluation of the earliest-starting-time (est(n)) of vector
operation n. We start by defining the notation used prior to finding the est time for each
possible case. Variable vs denotes a vector or a scalar. vs.n denotes a vs that is input
operand for vector operation n. n.vs denotes a vector/scalai that is produced by n. Fu(n)
denotes the functional unit on which n is to run. Denote by s(n), t(n), ti(vs) the starting
time of n, finishing time of n, and the time to load vs from memory into some register,
respectively. t(M) and t(Fu) denote the earliest time the memory (Mi, or Mot) and
functional unit Fu are free, where M,,t (loading) and Mj, (storing) are memories used
to establish two independent data-paths (C240) with the vector-processor.

Evaluation of the earliest-starting time (eat(,z)) is based on the previous status of the
Fus, Mj, and Moj, and the number of registers and data-paths used. Evaluation of the
est(n) for the C240 requires analysis of the following three cases.

For Case 1, n requires loading of two vectors vsi.n and vs 2.n. Denote by tL(vsl, vs2)
t(Mo 1) + t1 (vs 1 ) + ti(vs 2 ) the time at which both operands vsl.n and vs 2.n will be loaded
from the memory into some registers. As there is no possible chaining, est(n) is defined
by est(n) = max{tL(vsl,vs 2),t(Fu(n))}.

Case 2, n requires loading of one vector vs.n while the other operand is generated by
a predecessor n'. If no chaining is possible (Fu(n) = Fu(n')), then est(n) depends on the
later of the loading time tL(vs) and the time t(Fu(n')) the functional unit Fu(n') is free,
i.e., est(n) = max{tL(vs),t(Fu(n'))}.

In the other case (Fu(n) 5 Fu(n')), chaining can be done if at the chaining time
(t,(n) = s(n') + b(n')) the loading of vs.n is complete and Fu(n) is free, where 6(n') is
the delay on of n due to its chaining with operation n'. If the previous condition is not
satisfied, then running n may take place following the completion of n'. To summarize,
the est(n) will be defined by:

= J t'(n) if t,(n) > max{tL(vs),t(Fu(n))}
est(n) = max{tL(vs),t(n'),t(Fu(n))} otherwise (no chaining)
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For Case 3, both operands of n are generated by predecessors n' and n", respectively.
If there is no chaining (Fu(n) = Fu(n') = Fu(n")), then est(n) = t(Fu(n)) because no
loading is needed.

There is potential chaining on one unit when (Fu(n) 7 Fu(n')) but (Fu(n) = Fu(n")).
Chaining is possible if at the chaining time t,(n) = s(n') + 6(n') the computation n" is
complete and Fu(n) is free, where 5(n') is the time to store the first result of n'. In other
words, est(n) is defined by:

f t,(n) if tý(n) _> max{t(n"), t(Fu(n))}
est(n) = max{t(Fu(n)),t(Fu(n"))} otherwise (no chaining)

There is potential chaining on two units when Fu(n) 6 Fu(n') and Fu(n) 5 Fu(n").
We restrict ourselves to the case of the C240 that has two arithmetic units. Therefore,
operations n' and n" are sequentially executed and the chaining time of n is t,(n) =
max{t',(n), t"(n)}, where t' (n) = s(n') + 6(n') and t"(n) = s(n") + 6(n"). The chaining is
possible if Fu(n) is free at the chaining time t,(n), otherwise n is to start following the
completion of both predecessors n' and n". To summarize this case, we have:

= t,(n) if t,(n) > t(Fu(n))
est(n) max{t(Fu(n)),t(Fu(n')),t(Fu(n"))} otherwise (no chaining)

Finally, we evaluate the earliest time (trc(n)) at which the resource (Fu, Mo.t, and
bank inputs and outputs) needed for n becomes available. The register and data-path
availability are examined at time point est(n) that has been evaluated previously so that
tc(n) > est(n). If the needed resource is available, then t,,(n) = est(n). Otherwise, t,,(n)
will be the earliest time the needed resource will be released. The final earliest-starting
time of n will be used by the scheduling algorithm.

Using the above evaluation of the earliest-starting-time, the proposed vector-scheduling
is based on minimizing the Fu idle times in an attempt to maximize the efficiency and
to promote potential vector-chaining. Each loop separately scheduled. Vector load is
not considered as a separate operation but included within each of its arithmetic vector
operation. At any given time, the operands of ready-to-run operations are available in
memory or in some vector registers. The major steps of the Vector-Scheduling algorithm
is the following:

1. All operations of the loop are stored into set A except the set of ready-to-run

operations that are stored into set B

2. Repeat the following steps until B is empty

(a) Select the operation n E B that can start at the earliest time (est(n)) as a
heuristic to maximize the efficiency of the Fus, allocate n, allocate one register
to the output of n, and update the timing of all the resources used by n

(b) Load input operands (if any) for n, allocates one register, and updates the time
Mot will be free

(c) Check whether a successor operation of n becomes ready to run, remove it from
A and insert it into B

The time complexity of the vector-scheduling algorithm is O(pm2 ), where p is the
number of resources and m is the number of vector operations.
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4 MininAzing Register and Data-Path Conflicts
The previous scheduling guarantees that: 1) different loads (M,,,) or stores ( are
properly serialized, 2) allocation of vector operations to Fus do not conflict and, 3)
resource availability is guaranteed. In the following we analyse three types of conficts
that might result from the use of the previous schedule.

Overlapped lifetime of vectors may lead to conflicting utilization if at least two vectors
are allocated to the same register or to different registers but within the same register
bank. Denote by w,8 (v, v') the time cost, or delay over the finish time of the previous
schedule, of spilling either v or e whenever their lifetimes overlap. The cost " in', r') is
the time to store and load one vector data.

Overlapped bank output occurs when two vectors v and t/ are allocated to registers
of tht same bank and their loading into the corresponding Fus overlap with respect
to time. Denote by w6..,(v, v') the cost associated with the least delay incurred to the
schedule as a result of serializing the use of the bank output. Therefore, o ,) -=
min{t(n') - q(yi),t(n) - s(n')}, where n and n' are the operations that consume t' and 1',
respectively, and s(n) and t'n) are the starting and ending times of n.

Overlapped bank input occurs when two vectors v and t" are allocated to registers of
the same bank and their storing into their registers overlap with respect to time. The
associated cost wi,, is the least delay incurred by the schedule when serializing the use of
the bank input.

Based on the above time delays, we heuristically define the global weight 4'(n, i") of
edge (v, t) as the maximum delay caused by the interfering operations of vectors t, and
v'. Each vector v is further assigned a weight w(v) that is the sum of all the delays caused
to the schedule:

Sf o if no lifetime overlapE. E, max{w.,(v,v') ++ wbi(v,v`) + w&,t(v,vd)} otherwise

In the following we use Weighted Graph Coloring for allocating banks and registers to
the vectors of each loop. The vectors used in each loop are associated an undirected graph
in which a node v has the weight w(v) and an edge (v, v') has the weight w(v, v'). The
graph is formed by a collection of non-connected sub-graphs. The used coloring algorithm
is a variant of [3]. The algorithm uses two heaps A and B:

1. Initially, A contains all nodes except the one with the highest weight which is placed

in B,

2. Repeat the following steps until A is empty

(a) Repeat the following step until B is empty

i. Remove a node v from B (highest weight), color v, and add to B all
immediate neighbors of v after removing them from A

(b) Remove from A the node (first node of a new component) with the highest
weight and insert it into B

The time complexity of this algorithm is O(cm2 ), where c is the number of components
and m is the number of vectors within a component.
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Different Pro grams and Different Allocations
Speedup L(I) L(2) L(3) L(max)

SC 240/.P, 11 9.75 8.72 8.6
Sop/nlop, 15.73 12.87 10.55 10.15
so.8/C240 1.43 11.32 11.21 1.18 _

Table 1: Speedup of (C240) and this Approach (opt)

5 Performance Evaluation

Our objective is to develop a compiler optimization to assists non-expert programmers.
We consider synthetic Fortran programs. Each is formed by a total of 30 arithmetic vector-
expressions. Each expression may include up to four vector-operations. To generate these
programs, the dependence edges between the expressions were randomly generated in
order to specify the vector-operands for each expression including possible vector-loads.
The maximum number of expressions that belong to the same level in the data dependence
graph (DDG) were at most four and the number of levels was at least five. All LCD was
present in 20% of the expressions and all loop counts were set to 1000. We use L(k) to
denote that each loop is allowed to incorporate at most k expressions.

Let's SC24o/o.w be the speedup of the highest optimization level of the Convex C'240
over the No-Optimization or scalar execution. We also use the speedup SPqnopt,. where
opt refers to the proposed approach. Finally, we use the Speedup Sod/c24o to compare
our approach to that of the C240 highest optimization option. All the studied cases use
one processor only. Table 1 shows the results of averaging the running of 10 programs for
each value of L(k).

The first entry in Table 1 shows the measured speedup of the C240 optimizer over the
scalar processor (-no) when only one VP is used. The highest speedup is 11 which is
measured when the program is formed by loops that contain only one vector expression.
This speedup decreases with increasing the gra.iule size of the loops (L(l), L(2). etc.).
The reason is that the vector processor of the C240 has hardware support to implement
the loop overhead that is much faster than the software approach used by the scalar
processor.

With loops having few statements (L(1), L(2), and L(3)), the newly loaded vector
data in the beginning of each loop could have been made available in vector registers
during the running of previous loops. The overhead of multiple vector load and store is
avoided in our approach through loop fusion. The effect of loop fusion aliows improving
the speedup as shown in Sglw and Sot/, 240 of table 1. All assignment statements
require storing data regardless of loop boundary. The difference is that with loop fusion
some of these vector store can occur while the arithmetic pipeline-, can be active.

The effect of statement migration appears more sharply when the number of expres-
sions within each loop is maximum (L(max)). In this case, the opportunity of loop fusion
is reduced but there is still some benefit from transferring expressions from one loop to
another in order to align vector data producers with vector data consumei. as an attempt
to promote pipeline chaining. The benefit of statement migration (L(max)) allowed to
improve the speedup obtained by the C240 by 18% as shown by So,/c24O.



201

Same Programes but Different Allocations
Speedup L(1) L(2) L(3) L(max)
SC240/nopt 13.69 11.50 9.68 9.31
SoPt/noPt 15.73 12.87 10.55 10.15
Sop¢/c240 1.15 1.12 1.09 1.09

Table 2: Effect of the allocation and scheduling of the VP

5.1 Effect of Scheduling and Allocation

The objective of the second experiment is to study the effects of the proposed vector
scheduling and resource allocation. For this, the C240 optimizer and our scheduler were
run using the same restructured program in an attempt to isolate and compare the schedul-
ing and allocation effects which have been done separately.

Table 2 shows the measured speedup for this experiment. The achievement of our
scheduling and allocation are still those obtained in the first experiment. However, the
C240 optimizer improves its speedup (Sc24o/,opt), when using restructured programs, by
a 10% to 24% factor compared to that achieved without restructuring the program.

The C240 can find more opportunities for chaining in the restructured programs as
most producers/consumers are now located within the boundary of each loop. Our ap-
proach improves its speedup by a 9% to 15% factor over that of the C240 due to our
scheduling and allocation.

The C240 optimizer uses the technique of reservation table in scheduling vector opera-
tions over the available pipelines [7]. The timing of all the operations is rounded so that it
can either be one or two macro-cycles. Vector scheduling that is a variant of list-scheduling
[91 is performed in the first pass. There are many reasons for inserting delays into the
reservation table in the allocation pass. In general, the inserted delays negate some of the
chaining benefits of the first step. A conservative conclusion is that early incorporation
of timing constraints in allocating the vector registers and data-paths yields better result
than the approach used in commercial vectorizers such as that of the C240.

6 Conclusion

The objective of this work was to investigate some aspects of global restructuring of syn-
thetic programs based on restructuring of the source program and the use of a chaining-
oriented machine dependent allocation. For this, we proposed reducing the granule size
of scalar loops by extracting vectorizable and parallelizable statements. Furthermore,
these statements can be fused within other loops of the same type and having similar
loops count in an attempt to increase the granule size of parallel loops. The other benefit
of this operation is that placing data producers closer to their consumers increases the
opportunity for chaining their execution, and increasing reuse of data in vector-registers
and cache-memory. At a lower level, we proposed a horizontal scheduling and alloca-
tion method based on locally maximizing the efficiency and incorporation of the vector
load/store delays.

Our approach allows improving the highest optimization option of the convex C240
by a speedup factor of 18% to 43%. Chaining-oriented scheduling and allocation gave an
improvement of 9% to 15%.

Future extension to this work would be the integration of expert techniques in paral-
lelism extraction for each type of loops. This would greatly help scientists in optimizing
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large scale programs within the framework of an interactive optimizer.
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Abstract: A popular approach to speed up fine-grain concurrent languages is to parti-
tion programs into threads. This requires static analysis to determine task dependencies,
to avoid placing a cycle within a thread. In the context of concurrent logic programs
(CLPs), dependency analysis requires mode analysis. Simple argument modes are insuffi-
cient because dependencies can be hidden within complex terms. In this paper we review
Ueda and Morita's proposed path analysis method and present three novel algorithms for
realizing the technique. We present empirical measurements of the analysis times of a
benchmark suite which indicate that the analysis can be comparable to the compilation
time on a simple, non-optimizing compiler. This study presents the first empirical results
concerning the practicality of complete mode analysis for CLPs.
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1 Introduction

Concurrent logic programs, such as FGHC [9], as well as other dataflow languages such
as Id, are collections of fine-grain concurrent tasks that synchronize implicitly when input
data is not available to a procedure invocation. Naive compilation causes too many, too
small tasks to be generated. Improving execution performance by static partitioning into
threads is a currently developing technique e.g., [6]. In contrast to functional languages,
logic languages have an additional problem that data dependencies are implicit, i.e., the
input/output characteristics of program variables are not explicitly declared or trivially
derivable. Conservative knowledge of dependencies is necessary to avoid placing a cycle
within a thread thereby causing erroneous deadlock.

There are numerous methods for automatic derivation of mode information from se-
quential logic programs, e.g., [2, 4, 5]. Another option is user declarations (e.g., [10]),
which we consider either incomplete or too much burden on the programmer. For CLPs,
Ueda and Morita [14] proposed a mode analysis scheme based on the representation of
procedure paths and their relationships as rooted graphs ("rational trees"). Unification
over rational trees combines the mode information obtainable from the various procedures.
For example, in a procedure that manipulates a list data stream, we might know that the
mode of the car of the list (that is the current message) is the same mode as the cadr
(second message), caddr (third message), etc. This potentially infinite set of "paths" is
represented as a concise graph. Furthermore, a caller of this procedure may constrain
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the car to be input mode. By unifying the caller and callee path graphs, modes can
be propagated. This analysis is subtlely different than classical abstract interpretation,
which could also be used to generate identical information.

Mode information is useful not only for compiler optimization but also for static bug
detection. In the latter, the analyzer warns the programmer that variable usage disobeys
conventions and is thus likely to be erroneous. In this regard, the analysis constitutes
a type restriction on the language, called "moded" flat committed-choice logic programs
by Ueda and Morita. These are programs in which a variable has at most a single
producer and the mode of each path in a program is constant, rather than a function
of the occurrences of the path. This is not regarded as a major drawback, since most
non-moded flat committed-choice logic programs can be transformed to moded form.

To motivate the importance of the static analysis, consider an experimental FGHC-
to-C compiler built using these techniques [7]. Measurements were made comparing the
sequential C code generated by our sequentializer and several other systems. Noteably,
handcrafted C programs and FGHC programs compiled by the Monaco research compiler
generating parallel code [11]. For a QuickSort program sorting 500 integers on a single
Sequent Symmetry processor, Monaco ran in 10.5 seconds, handcrafted C in 1.5 seconds,
and our sequentialized code in 2.2 seconds. We chose this example to motivate the point
that significant performance improvements over traditional systems (Monaco was the
fastest multiprocessor implementation of FGHC at the time of the experiment) can be
achieved with this technique, and the speeds are getting closer to optimized C. Although
more sophisticated partitioning (e.g., based on granularity estimation [6]) is needed to
retain multiple threads for parallelism, mode analysis is still required for safety.

In this paper we discuss three algorithms for implementing Ueda and Morita's tech-
nique: the first implementations yet built and evaluated (M. Koshimura also has an
MGTP implementation [12]). We present empirical measurements of the analysis times
of a benchmark suite which indicate that the analysis is comparable to compilation time
on a simple, non-optimizing compiler.

2 Background: Paths and Modes

Ueda and Morita's [14] notion of "path" is adopted as follows: a path p "derives" a subterm
a within a term t (written p(t) I- s) iff for some predicate f and some functors a, b. ... the
subterm denoted by descending into t along the sequence {< f, i >, < a,j >, < b, k >,...}
(where < f, i > is the ith argument of the functor f) is s. A path thus corresponds to a
descent through the structure of some object being passed as an argument to a function
call. f is referred to as the "principal functor" of p. A program is "moded" if the
modes of all possible paths in the program are consistent, where each path may have
one of two modes: in or out (for a precise definition, see Ueda and Morita [14]). For
example the cadr of the first argument of procedure q has an input mode specified as:
m({<q/3,1>, <./2,2>, <./2,1>}) = in.

All analyses presented in this paper exploit the rules outlined by Ueda and Morita.
For the purposes of following this paper, we grossly summarize these as three rules:
§1 nonvariables and variables constrained in certain ways in the guard are immediately
deduced as in; §2 corresponding paths among left and right side of body unification goals
have opposite modes, and §3 variables have at most one producer thus multiple occurrences
have at most one out instance.'

'This is not precise: a variable produced in the body (out) can be exported in the head (also out).
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Figure 1: Initial Graph of Procedure q/3, After Phases I-II

3 Constraint Propagation Algorithm

In the constraint propagation algorithm [13], a graph2 is constructed representing the
entire program.' Analysis proceeds by unifying all roots with the same functor and arity.
Termination, occurring when no further reduction is possible, is guaranteed because the
mode lattice is finite and monotonic. Checking for program "well modedness," the analysis
cannot terminate even if all modes are derived, in anticipation of a later contradiction. 4

Thus time complexity is simply a function of the size of subgraphs to be unified [14] which
are usually small. A program graph is a directed, multi-rooted, (possibly) cyclic graph
composed of two types of nodes. To illustrate the following definitions, Figure 1 presents
a portion of the program graph for Quicksort.

A structure node (drawn as a square) represents a functor with zero or more exit-ports
corresponding to the functor's arity. If the node corresponds to a procedure name (for
clause heads and body goals), there are no associated entry-ports (i.e., it is a root). If the
node corresponds to a data structure, there is a single entry-port linked to a variable node
unified with that term. A structure node contains the following information: a unique
identifier, functor, and arity.

A variable node (drawn as a circle) represents a subset s of (unified) variables in a
clause. Intuitively we think of these variables as aliases, and upon initial construction of
the graph, s is a singleton (i.e., each unique variable in the clause has its own variable
node initially). A node contains k > 1 entry-ports and j >_ 0 exit-ports, upon which
directed edges are incident. A unique entry-port corresponds to each clause instance of
each variable in s. An exit-port corresponds to a possible unification of the variable(s) to

'Throughout the paper we informally refer to rational trees as graphs. Note that our graph grammar
is quite different than that of Ueda and Morita.

3 1t is straightforward to build an incremental analyzer; we do not go into details here.
"A program is "well-moded" if the modes of all paths are known, "moded" if the modes of some paths

are known, and "non-moded" if there is a mode contradiction.
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A variable node contains the following information: a unique identifier and a mode
set m. An element of m is a vector of length k containing self-consistent modes for the
variable instances of s. To facilitate the implementation, each entry-port has a name: the
identifier and exit-port number of its source node. Elements of m are alternative mode
interpretations of the program. Initially m is computed by Ueda and Morita's rules.5

Intuitively, graph reduction results in removing elements from m as more constraints are
applied by local and global unifications. A fully-reduced graph, for a well-moded program,
has a singleton m in each variable node.

Initial graphs, e.g., Figure 1, are multi-rooted directed acyclic graphs. The initial roots
correspond to clause head functors, body goal functors, and body unification operators.
In addition to the program graph, a partitioned node set is kept. Initially, each node is a
singleton member of its own partition (disjoint set).

The mode analysis consists of three phases: I) creating a normalized form and initial
graph; II) removing unification operators from the graph, and III) reducing the graph to a
minimal form. Phases I and II (shared by the process network implementation) convert a
flat committed-choice program into a normalized graph with roots named only by clause
heads and user-defined body goals. Precise details of this transformation can be found in
[131. Phase III is described next.

Throughout this brief discussion of unification, consider the example shown in Figure
1 (initial) and Figure 2 (after unification of roots 1 and 3). See [13] for the formal
graph unification algorithm. Unification is invoked as unify(a,b) of two nodes a and b
(necessarily root structure nodes). The result is either failure, or success and a new graph
(including the node partitioning) that represents the most general unification (mgu) of
the two operands. Implied data structures used by the algorithm include the graph, the

'The size of m increases with the complexity of the rules, e.g., rule §3 (Section 2) can produce several
vectors. By explicitly enumerating initial modes, we simplify the analysis by obviating the need to actively
apply complex constraints implied by rule §3 throughout reduction of the graph.
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disjoint sets (i.e., node partitioning), and a mark table associated with pairs of nodes.
Structure and variable node unifications follow recursive descents. Initially all marks

are cleared. Circular structures that represent infinite paths are handled properly by
marking node pairs at first visit. If a given node pair has been previously marked, revis-
iting them immediately succeeds. Note that we mark pairs instead of individual nodes to
handle the case of unifying cyclic terms of unequal periodicity.

Two important operations for the disjoint sets data structure are union(x,y) and
find.set(i). Function union(xy) unites two disjoint sets, where x belongs to the first
disjoint set and y belongs to the second disjoint set. Procedure union returns the canon-
ical name of the partition, i.e., the least identifier of the nodes. This facilitates reusing
graph nodes while rebuilding the graph. Function find-set(i) returns the canonical name
of the disjoint set containing z.

The major complexity in the algorithm is variable node unification where the modes
of two argument nodes must be merged. First, mode vectors that are contradictory are
discarded. If all mode vectors are contradictory then a mode error has occurred and
unification fails. Otherwise redundant modes are removed and the two mode vectors are
concatenated. Next we create the entry-port identifiers associated with the new mode
vector. Lastly, children of the argument nodes that share equal functor/arity must be
recursively unified. The exit-port identifiers consist of a single exit-port for each pair of
children unified, included with exit-ports for all children for which unification does not
take place. Intuitively, a variable node forms or-branches with its children, whereas a
structure node forms and-branches with its children. In other words, the least-upper-
bound (lub) of the abstract unification semantics at a variable node is a union of the
structures that potentially concretely unify with the variable node.

4 Process Network Analyzer

The previous constraint propagation algorithm was alternatively implemented by a pro-
cess network wherein each node of the graph was an active, concurrent process. Nodes
communicated by message passing over streams to accomplish reduction. The motiva-
tions for moving the graph from a static data structure to an active process network
are: 1) concurrency is increased because updating the graph no longer bottlenecks the
computation; 2) unification of graph nodes corresponds to merging node processes, thus
resource requirements made by the analyzer decrease as execution proceeds, and 3) an
active process network is an elegant paradigm for this problem.

Translating the unification algorithm requires the specification of how recursive uni-
fication can proceed via message passing, how the distributed unification can terminate
(both successfully and by failure), and how the final mode information can be read from
the reduced graph. Do to insufficient space, we briefly discuss only the distributed unifi-
cation algorithm (see [12] for additional details).

A node process manages either a variable or structure graph node. The node process
contains state holding a unique integer identifier, a symbol (functor/arity for structure
nodes and the atom '$VAR' for variable nodes), mode information, and a flag indicating
if the node is from a clause head. Mode information consists of a set of mode vectors
and a vector of entry ports, as described in Section 3. In addition, a node has an input
stream, a list of output streams to children, and a global termination flag.

A node process acts on the following two messages (in addition to others). Receipt
of message unify (+Id,+SO,-S1 ,Parents, ÷Ans,+Done) indicates that this node is re-
quested to initiate a unification with node Id on input stream SO. Parents are the two
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parent nodes who made this unification request. The results of the unification are S1
which is the tail of the stream to node Id and Aas, a short-circuit chain' for unification
termination. Done is the short-circuit chain for message termination. Receipt of message
who (-Info.-In,-Out, +Done) indicates that this node is to be unified with another node,
and therefore this node is to be terminated. Before termination, the state of the node
is passed back to the initiator node via back-messages: Info, In, and Out. Done is the
short-circuit chain for message termination.

The implementation shares phases I and II with the previous algorithm, and then
spawns a node process network from the static graph definition. Similar to the static
graph analyzer, the root list is grouped into pairs which are unified, then these resulting
trees are unified and so on, forming a logarithmic tree of unifications.

A node that receives a unify/6 message is the "active" member of a reduction. It
sends a who/4 message to the "passive" member, who returns all its state information
on a back message and terminates itself. For structure-structure unification, the node
symbols are compared and if matched, the active node sends unify/6 messages to one
member of each pair of children. Otherwise failure occurs.

For variable-variable unification, first the mode sets must be merged. If the merge
is successful, then only children with matching functors are unified, by sending unify/6
messages. Non-matching children are simply appended to the output stream list of the
active node. If the mode set merge is a failure, then the unification fails.

The primary differnce between the previous static (Section 3) and active (Section 4)
graph implementations is that the latter is fully concurrent. The static graph is sequen-
tialized by necessity to update the graph consistently. One fix would be to partition the
graph into independent subgraphs (finding the strongly-connected components of the call-
graph), allowing concurrent reduction. The active graph analyzer was more difficult to
build than the static analyzer because concurrent process networks are notoriously hard
to debug. However, compared to other distributed algorithms, debugging was not overly
burdensome because our abstract unifications monotonically approach the final state.

From profiling information we deteri.:;ned that the active graph analyzer spends most
of its time checking for self-unification of a node (necessary for circular unification) and (to
a lesser degree) manipulating mode vectors. To check for self-unification, we instituted a
naming scheme wherein the identifiers of two nodes to be unified are concatenated to form
the identifier of the new node. Thus node identifiers grow in size during reductions, and
although we use difference lists to concatenate cheaply, the cost of checking membership
within an identifier list grows. An alternative would be to allow both nodes to live
(currently we terminate one of them to save space), and update the state in each to
indicate the current minimum identifier of the alias set. We have not yet experimented
with this option (it is very similar to method used in static graph implementation).

Mode vector manipulation requires finding the indices (within the vectors) of the mode
elements being compared, and concatenation of the two vectors (less the duplicate mode
element which is removed). Time is spent about equally between these main functions.
Quickly finding indices requires a more sophisticated data structure than the current list.
Quick concatenation requires either difference lists or bit vectors. Both are complicated
by the removal of duplicate elements. In fact, the static graph implementation elected
to forgo duplicate removal and used difference lists for mode vectors. This contributes
to the increased space requirement for the static graph analysis (Section 6). The active
graph implementation uses standard lists with removal. We need further experimentation
to determine the best solution.

'See [9] for discussion of CLP programming techniques such as short circuits and back messages.
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The space complexities of the active graph analyzer lie in spawning a process for each
graph node. This working set churns through memory more quickly than the static graph
implementation (which can exploit local memory reuse in PDSS to keep data copying low).
Currently we do not constrain the number of processes, but this could be accomplished
in the manner opposite to parallelizing the static graph analyzer: first finding groups of
strongly-connected components of the program's call graph, and then analyzing only one
group at a time. For example, a short-circuit chain could be used to force synchronization
between one group and the next. In a multiprocessor system, explicit load distribution of
the groups would be needed.

5 Finite Domain Analysis

To avoid circular unification altogether and much of the overheads of maintaining the
graph, either statically or actively, a radically different algorithm was developed [7]. The
first stage of this alternative algorithm generates a finite set of paths whose modes are to
be considered. Only "interesting" paths are generated in the first stage of our algorithm:
effectively those paths locally derived from the syntactic structure of the procedures.
There are three classes of interesting paths. The first class consists of paths that directly
derive a named variable in the head, guard, or body of some clause. All such paths can be
generated by a simple sequential scan of all heads, guards, and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where
a proper path through the opposite side of a unification with v derives a variable v'.
More formally, consider a unification operator v = t where v is a variable and t is some
term other than a variable or ground term. Let v' be a variable appearing in t at path
q, i.e., q(t) I- v'. Then if p is a path deriving v (by which condition p is also inter-
esting), then the concatenated path p. q is also an interesting path. All paths in this
second class may be generated by repeated sequential scanning of all unification goals
until no new interesting paths are discovered. The necessity for repeated scans is illus-
trated by such clauses as "a(X, Z) :- Y = c(X), Z = b(Y)." where the interesting path
{< a/2,2 >, < b/l, 1 >, < c/1, 1 >} given by the first unification body goal will not be gen-
erated until the interesting path {< a/2,2>, < b/l, 1 >} in the second unification body
goal is generated. Such repeated scans should occur infrequently in practice. In any case
not more than a few scans are necessary - no greater number than the syntactic nesting
depth of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting on
the right-hand side of a unification body goal (i.e., a path of the form {<=/2,2>}-s)
is interesting, then so is the corresponding path starting on the left-hand side of that
unification (i.e., {<=/2,1 >}.s).

In general, all interesting paths of a program are generated in a few sequential passes,
e.g., the 39 interesting paths of Quicksort are generated in two passes. The interesting
paths could be generated from a depth-one traversal of the complete Quicksort graph,
except for two paths which are "hidden" because they cannot be derived locally. However,
the set of interesting paths produced is sufficient to mode the program in the sense of
assigning an unambiguous mode to all syntactic variables. This is not always the case!

Once we have generated a set of interesting paths, our algorithm proceeds by simply
noting the modes of paths, first directly, and then by examining relationships between
paths. There are essentially four different stages in the algorithm: 1) Assert absolute
modes for some paths; 2) Assert that all paths on opposite sides of a body unification have
opposite modes; 3) Proceed sequentially through the variables derivable from interesting
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paths, asserting all binary relations between paths, and 4) Repeatedly consider multiway
relations (rule §3 Section 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential
in the number of variables, but by the time it is actually performed, most alternatives
contradict the known modes, and thus are not explored. We found multiway analysis
contributed only 2-7% of total analysis execution time in simple programs, and 11-20%
in complex programs.

Important theoretical issues raised by this algorithm are its consistency, completeness,
and safety. It is not difficult to prove that the finite domain algorithm is consistent in the
sense that if, at some point in the analysis, path p is shown to have mode m, and if some
subset of the interesting paths implies that p does not have mode m, then the algorithm
will derive and report this contradiction. The major barrier to the consistency of this
algorithm is somewhat subtle: the non-modedness of a program may not be detectable if
the analysis uses the wrong set of paths! This leads directly to a reasonable definition of a
complete set of paths. A set of paths generated for a program is complete iff the existence
of a consistent moding for the set of paths implies that the program is well-moded.

Thus, the infinite set of all possible paths is a complete set; however, we are interested
in finite complete sets and in particular in a minimal complete set of paths for the program.
The path generation algorithm is incomplete; because of this incompleteness in path
generation, the finite domain method is unsafe. It is a consequence of the incomplete set
of generated paths that even if the program contains information about the mode of a
path, that information may not be derived. Thus, the analysis is unsafe in the sense the
compiler may not detect mode contradictions in erroneous (not well-moded) programs,
and thereby produce erroneous mode information for programs that should be rejected
altogether. Nonetheless, most generated paths in typical programs are moded by the
finite domain analysis, and if the program being analyzed is known to be moded, all
modes derived are correct. Assuming it can be made faster than safe analyses, unsafe
analysis has utility for "lazy task creation" systems [81.

6 Performance Comparison and Conclusions

A benchmark suite of KLI source programs (Table 1) was analyzed using the three
mode analyzers. The analysis tools were all implemented in KLI and run on the PDSS
(V2.52.19) compiler-based system, on a Sun Sparcstation 10/30. PDSS executes about
34,000 reductions per second for the analyzers described here. The analyses tend to have
complexity related to the number of symbols in the source program [141, which we catego-
rize as constants (including functor symbols) and variable instances. Because paths can
be cyclic, we define the number of "broken" paths, e.g., the car and cdr of a list will be
counted, but not the cadr or cddr. We list, in parentheses, the number of paths produced
by the finite-domain analyzer, since it may differ from the other three algorithms.

Execution performance is summarized in Table 2, giving the execution time (an average
over five runs) and data memory consumption for each source program. The last row gives
the static code size of the tools themselves. The broken path output of the analyses was
verified as identical modulo the incomplete nature of the finite domain method. There
are several interesting observations supported from the empirical measurements:

* Programs such as cubes and waltz contain ground lists of data that increase the
analysis complexity by lengthening the propagated paths. Although we can hope
that a ground data list of length one holds as much information as length 100,
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symbols broken paths
program proc clause count vanI total total av1 length
s6"t 2 5 31 40 71 19 (17) 1.6
pmes 6 12 49 63 112 33(28) 1.5
nrsort 4 11 54 75 129 36(30) 1.7
queens 6 14 77 119 196 71(43) 1.8
cubes 9 16 93 159 252 224(79) 2.7
pascal 11 22 143 200 343 338 ( 56) 2.0
rues 16 66 218 390 608 79(46) 1.6
bestpath 20 44 279 492 771 507 (207) 2.5
waltz 20 54 333 630 963 329( ) 2.2
waves 20 45 352 690 1042 623 (220) 3.0
triangle 42 80 315 1226 1541 1155(648) 2.0

Table 1: Benchmark Suite Characteristics

PDSi an tetatc active PDSS I fnite stati active
benchmark compile domain graph graph compile domain graph graph

exe _io t maec) memory consumption (kbytes)
quet 410 480 380 230 111 185 373 138
primes 780 950 610 370 164 320 616 204
insort 760 1,080 760 490 158 381 795 281
queens 1,140 2,190 1,210 620 244 692 1,444 340
cubes 1,570 3,030 1,730 1,080 320 1,057 2,070 571
pascal 1,660 4,710 2,410 1,060 343 1,362 3,272 574
rues 3,010 7,970 6,370 2,350 699 1,838 8,224 1,343
bestpath 6,160 20,740 11,220 3,630 922 8,501 17,296 1,779
waltz 4,510 19,280 11,730 5,700 803 6,394 17,696 2,278
waves 7,960 37,540 16,320 4,690 1,204 9,098 28,371 2,318
trianle 11,720 52,920 51,440 9,660 1,865 17,339 51,656 4,437
analynern 273 44 54 70

Table 2: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)

there is always an outside chance that the 99'h element will cause a contradiction
somewhere in the program. We are considering methods wherein we can cut ground
terms and then do post-analysis to ensure that we did not miss a contradiction.

" Development of the analyzers by novice programmers indicated some weaknesses
of current CLP development environments. Notably, even after tuning, the finite
domain analyzer is still generating excess suspensions and the static graph analyzer
has high memory consumption. For example, although graph construction required
35% of total analysis time in the static graph analyzer, it was proportionally 68%
in the faster active graph analyzer (written by an expert). This leads us to believe
that the analyzers can be further tuned.

" Finite domain analysis does not appear faster than constraint propagation and there-
fore its utility is questionable. Although the reduction in paths decreases memory
consumption slightly, it can in some cases produce more paths than are necessary,
and in other cases delay resolution of multiway relations.

" The active graph analyzer demonstrates execution times ranging from 47% to 126%
of the PDSS compiler. The arithmetic mean over the benchmarks is 69%, which
we consider acceptable. For large programs, garbage collection remains problematic
and thus we must throttle task creation. For example, analyzing triangle consumes
2.4 times the memory of the PDSS compiler.
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We have described three alternative algorithms for rational-tree unification for the
derivation of path modes in CLPs. We showed that mode analysis time was compara-
ble to compilation time, which we consider reasonable, especially since Monaco [11], our
native-code optimizing compiler (doing dataflow analysis, register allocation, etc.) has
significantly slower compilation than PDSS. Currently the mode analyzers are being in-
corporated in an experimental FGHC-to-C compiler 171; Morocco, a "lazy task creation"
concurrent runtime system [8], and a thread partitioning compiler [1].
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Abstract: Concurrent. logic languages have been traditionally executed iii a "greedy"
fashion, such that computations are goal-driven. In contrast. non-s.trict functional pro-
grams have been traditionally executed in a "uataflow" fashion, such that computations
are demand-driven. The latter method can be superior when allocation of resources such
as memory is critical, which is usually the case for large. complex, and/or reactive pro-
grains. Specifically, demand-driven execution results in more efficient scheduling and im-
proved teirnination properties. This paper describes a novel technique for demand-driven
execution of concurrent logic language programs.
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Keywords: Logic Programming; Concurrent Programming

1 Introduction

The difference between goal-driven and demand-driven execution of concurrent languages
is a difference in execution focus: tasks or results? Goal-driven paradigms measure per-
formance as tasks executed per unit time and eagerly schedule tasks with r-gard for little
else. Demand-driven paradigms measure performance as answers delivered per unit time
and lazily schedule 'casks only when they are necessary to transform data needed to pro-
duce a result. The main advantages of goal-driven systems are simplicity of design and
abundant parallelism. The main advantage of demand-driven systems is better resource
allocation (e.g., memory usage) for resource-critical programs.

This latter advantage outweighs all others for programs that simply won't run other-
wise. We illustrate 6his with an example comparing goal-driven execution of a concurrent
logic (Strand [5]) program and demand-driven execution of a non-strict functional (Lazy
ML [2]) program. Concurrent logic programming languages (which we will refer to as
CCLs for committed-choice languages or concurrent constraint languages) are based on
implicit parallelism which is exploited via synchronization on logic variables [9].

A program to find the first five odd integers by generate-and-test, written in Lazy
ML and Strand, is given in Figures 1 and 2, respectively. The first program will almost
immediately report the first five odd integers (in reverse order), whereas the latter one
will always loop until it runs out of memory. The reason for this is that the traditional
CCL execution model is goal-driven: when a clause's head tests succeed, all goals in
the clause body are immediately candidates for execution. By contrast, th, traditional
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generate( N, L ) true I
Ni is N + 1, L [ N I Ls ],
generate( N1, Ls ).

let rec generate n =
n . generate (n + 1); test( N, _, L ) N > 5 I L = ].

test( N, C C I Cs 1, L )
let rec test n (c ce) N = =< 5, C mod 2 1 I

if (n > 5) then N1 is N + 1, L := [ C I Ls ),
1 test( N1, Cs, Ls ).

else (if (c %, 2 = i) then test( N, [C I Cs], L )
test (n + i) cs (C . 1) N =< 5, C mod 2 =\1 I

else test( N, Cs, L ).
test n cs 1);

five.odds( L ) :- true I
let five-odds = generate( N, Li ),

test 1 (generate i) nil; test( 1, Li, L ).

Figure 1: Sample Program in Lazy ML Figure 2: Sample Program in Strand

model for non-strict functional languages is demand-driven: a function ewluation may
be delayed until that function result is actually needed by the computation. Thus, the
Strand program continues to generate more and more integers, whereas the functional
program generates an integer only when the test demands one. When five odd numbers
have been found, the program will immediately terminate.

The example is given in Lazy ML and Strand only to make it concrete. In general,
all CCL implementations of which the authors are aware are goal driven. Most CCL
implementations share the following characteristics: the compiler generates "goal stack-
ing" code that creates goal records on the heap, instead of creating environment frames
on a stack (as in sequential Prolog for instance). The goal records are managed as a
pool or "ready queue (set)" from which "worker" processes can extract and add tasks.
All bindings are made in a shared, global name space. A procedure invocation suspends
when a required binding is not supplied by the caller. The required variable is linked to
the suspending goal by some internal data structure, and later the goal is resumed if the
variable is bound. This implementation scheme has evolved over the years and is resilient,
but can be quite inefficient, as discussed in Section 2.

As Figure 1 illustrates, programs written in Lazy ML have nice synchronization prop-
erties. Unfortunately, the demand-driven implementation of Lazy ML and similar lazy
functional languages is highly dependent on the purely functional nature of the language,
and thus cannot easily support logical variables [7]. Therefore, the problem of demand-
driven execution of CCL programs cannot be solved by a mere embedding of a CCL in
Lazy ML - a new mechanism is needed.

Much work has been put into mode analysis of CCL programs. In its simplest definition,
a mode of a variable occurrence in a procedure is "out" if the variable is bound in this
procedure or its callees, and "in" otherwise [12]. Note that since variables can be bound
to complex terms containing variables, in general we compute the modes of paths through
terms to variables (at the leaves). There are several mode analyzers under development
to collect this information (e.g., [10]), and we consider such analysis technology "a given"
for this paper. We call a CCL program fully-moded, if (among other restrictions not
relevant to this paper) there is at most one output occurrence of a variable in a clause
body. We call the family of fully-moded concurrent logic programs FM for short. In an
FM program, mode information always identifies the single occurrence of a variable at
which the variable is bound (namely the body occurrence with output mode). It is this
fact which makes demand-driven execution possible, thus, we limit our attention to FM



217

in this paper.
This paper illustrates a new technique for demand-driven execution of FM programs,

applicable to languages such as Strand [5], FGHC [9], and Janus [8]. The significance
of the work is that it is the first specification of a purely demand-driven mechanism for
CCLs (see discussion of related work by Ueda and Morita in Section 4). If successful, this
mechanism can lead to a quantum performance improvement and will facilitate reactive
programming.

2 Demand-Driven Evaluation

Because traditional CCL implementations do not rely on mode analysis, they must add
all body calls of a clause to the ready set immediately upon execution of the clause.
This leads to several sources of overhead relative to a demand-driven model, four of
which are discussed here. 1) Body calls may be scheduled and executed even when the
bindings they produce are not needed elsewhere in the problem. Even procedures which
stop after producing a finite number of bindings often produce more bindings than are
actually used. 2) Because producers of bindings may run arbitrarily far ahead of their
consumers, resource exhaustion, particularly memory exhaustion, may cause a program
to fail even though the language semantics imply its success. Thus, programmers have
to be conscious of implementation details, and must often employ complex workarounds,
such as bounded buffer techniques [5], to keep producers in check. 3) The ready set
is accessed very frequently, and may get arbitrarily large. While workarounds exist for
this problem, the ready set can nonetheless become a serious performance bottleneck.
4) Because a procedure may suspend, and indeed, may suspend upon several variables,
a complicated system for suspension and resumption of procedures is necessary. This
mechanism typically introduces high overheads for variable binding, as well as for the
suspension and resumption itself.

We propose to solve these problems by implementing a demand-driven execution
scheme for FM programs. At the heart of this scheme is the use of continuations, e.g.,
[1, 7]. A continuation consists of an environment, in this case a frame pointer, and
a program point, or instruction pointer. Thus, an executing worker may save its cur-
rent frame pointer and instruction pointer into a continuation. Later, that continuation
may be invoked by loading an executing worker's frame pointer and instruction pointer
from the continuation's, effectively continuing execution. Continuations have been used
to great effect in programming language implementations [1], and have sometimes been
made available to the programmer [3].

A reasonable way to implement demand-driven execution of FM programs, then, would
be to do something analogous to dataflow-style execution: 1) When a value is needed for
execution to proceed, the consumer of that value will ask the producer for the value,
by invoking a continuation in the producer. 2) The producer will supply the value, by
invoking a continuation in the consumer. Indeed, this is the first principle of our design:
control flow should follow dataflow.

The problem then, is how to provide the consumer with a continuation by which it
may obtain a value. The key is to realize that in logic programs, the value to be obtained
is inevitably the binding of a variable. Indeed, in traditional CCL implementations, it
is exactly this fact which is used to synchronize parallel execution: an invocation will
suspend when a variable the consumer wants to read has not yet been bound. Thus, it
is sufficient to make the following arrangement: at the time a logic variable is created,
the variable's creator will bind the variable to a continuation which will produce that
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variable's value. 1) Since the producer and consumer of a variable's binding are known
to share that variable, the consumer may bind to the variable the continuation which will
consume the value produced, before invoking the continuation in the creator which will
eventually produce the binding. 2) The creator will arrange for a value to be bound to
the variable, usually by invoking a continuation in one of its body goals. 3) The producer
will bind the variable to a value before invoking the continuation which will consume the
value. This is the second principle of our design: consumers and producers of a variable's
binding should communicate through that variable.

The implementation should allow parallel execution, but the execution model outlined
so far is sequential. To understand where the parallelism comes from, and the machinery
needed to handle it, it is necessary to understand some details that have been so far
avoided. First, where does the binding of a variable to a producer continuation come
from? The answer is that when the variable is created, it is allocated in the frame of the
invocation creating it, and is initialized to a continuation in this invocation. When this
continuation is invoked, as noted above, there exists enough information to determine
which body call will be necessary to produce a value binding for the variable.

Second, suppose that multiple consumers try to read the same variable before a bind-
ing for it is produced? This can easily happen on parallel hardware: while one worker
is in the midst of producing a binding for a variable, other workers try to read the vari-
able. The answer to the question is twofold: the variable must always be labeled with
a tag indicating whether a binding is currently being produced for it, and if a binding
is pending the consumer continuation must be added to a set of continuations bound
to the variable. The producer can invoke one of the continuations directly upon finally
producing a value binding, but other workers searching for work must have access to the
remaining continuations, which implies a global ready set. Thus while a global ready set
is apparently inevitable, a global suspend set can be avoided, by enqueuing suspended
threads of execution directly on the variable causing suspension, as continuations. The
third principle of our design might be stated by analogy with an epigram attributed to
Einstein: avoid global objects as much as possible, but not more so.

3 Implementation Model

Having sketched the principles of operation for demand-driven execution of FM programs,
we now discuss the technical details. Several preconditions must be met to make an FM
program suitable for the execution model: 1) each procedure will have the head and
guards of its clauses "flattened" and formed into a decision graph [6] which will select
a clause body for execution; 2) each clause body will be partitioned into a "tell" part,
which contains all body unifications, followed by a "call" part, containing all body calls;
3) similarly, each output argument of a clause will be categorized as either a "tell" output
argument, meaning that its binding is produced locally by a tell binding, or a "call"

argument, meaning that its binding is produced by a body call; 4) the binding occurrence
of each variable in the clause body will be identified.

The execution model also has ramifications for FM semantics. Since execution is now

demand-driven, the notion that a computation terminates when there are no ready goals
no longer applies. For simplicity's sake, the computation will terminate when all output
arguments of the query have been bound to ground terms.'

1If more complicated query termination conditions were required, new query syntax could be intro-
duced to achieve them.
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Global State: The only global object required by the model is the ready set ready. This will be imple-
mented as a locked queue of active messages [4, 11]. A message (for short) is a tuple <continuation,
contents>, where the contents of the message is merely some value to be communicated: the mr
register is loaded from the contents during message execution.

Worker State: The worker state consists of several abstract registers. The "instruction pointer" ip
points to the next instruction to be executed. The "frame pointer" fp points to the context in
which to execute. The "message register" mr is used for communication across continuations. The
"argument pointers" ap0 ..ap, are used to pass arguments to an invocation. The "call register" cr
is used during frame creation.

Variables: A variable is a locked tuple <state, binding>, where the state is an element of the
set {unread, read, written), and the binding is either a continuation, a continuation list, or a
value, depending on the state. The state always begins as unread and increases monotonically to
written: this corresponds to the single-assignment property.

Frames: A frame is the environment of a particular procedure invocation, and as such, must contain all
invocation-specific information. A frame is a tuple containing the following:

commit..index: The index of a clause which the invocation has committed to, or nil if the procedure
has not yet committed.

suspcount: The number of variables which must be bound before decision graph evaluation can
continue.

tobind: A list of binding indices, which will be used to restart other suspended calls to this invo-
cation after commitment.

parass: A save area for passed parameters of the invocation.

vars: A tuple of variables "created" by the invocation.

callfpi: The callfpi fields are used only after commitment: calllpi is either a locked pointer
to the frame created for the ith body call of the invocation, or nil if no frame has yet been
created for this call.

locals: A scratch area, used for objects which will not be visible outside the invocation.

Figure 3: Objects Required by the Model

The demand-driven nature of execution allows a new guarantee about program execu-
tion: any deterministic program which could complete in a finite number of steps in a tra-
ditional implementation will complete in a finite number of steps in this implementation.
Further, any program which will complete in a finite number of steps in this implemen-
tation will complete having created a minimal number of procedure invocations. These
guarantees are basically a promise to the programmer that scheduling considerations are
not part of programming for the demand-driven implementation.

We characterize the objects required by the model in terms of their scope: four kinds
of state which are relevant (Figure 3). The global state is visible and accessible everywhere
during execution. The worker state is information available only to a particular worker
during its execution. Variables are available both to their creator and to any procedure
invocation which has received them as parameters. Frames are available only to a particu-
lar procedure invocation. The execution mechanism is given in Figure 4 and illustrated in
Figure 5. The heavy lines indicate parent-child invocation relationships, with the dashed
lines indicating possible intervening invocations. The light lines indicate message passing.
Entry points read, resume, bind, and create are defined later in this section.

.. .. .. .
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1. An invocation, which we will call the "consumer" of a value, needs a variable to be bound
in order to proceed with execution. This must be the result of the fact that the consumer
needs the binding in order to commit to a clause.

2. The consumer obtains from the variable a continuation in another invocation, which
we will call the "creator" of the variable being bound. This continuation will have the
creator's fp, and the read entry point of the creator's procedure as the ip.

3. The consumer changes the state of the variable from unread to read, and makes the
binding of the variable a resume continuation in the consumer, which will utilize the
bound variable when it becomes available.

4. The consumer places a pointer to the variable in the mr of the worker, and invokes the
read continuation.

5. The creator of the variable determines which body call is needed to bind the variable.
It then computes a "binding index" bi denoting which output argument of the call is
being requested, and places the binding index in mr.

6. If the creator has previously created the frame necessary for the body call, it loads fp
with a pointer to this frame, and enters at the bind entry point of the procedure being
called. Otherwise, the creator allocates a new frame, loads fp with a pointer to it, and
enters at the create entry point of the procedure being called.

7. The previous step is repeated until an invocation, which we will call the "producer,"
actually produces a binding for the variable.

8. The producer obtains from the variable the resume continuation in the consumer which
will consume the value.

9. The producer rebinds the variable so that its state is written and its binding is the
variable's value.

10. The producer invokes the saved resume continuation, and the consumer uses the bound
value.

Figure 4: Demand-Driven Execution Mechanism

5-7: Creator and children send

1-4: Consumer rebinds X to read, Creator bind messages with mr = bi.

sends read message with mr X. 5-7: An invocation must be created:
sedsend create message with mr = bi.

-s . 5-7: More create messages.

- 8-10: Producer has bound X to value.

Consumer Return tconsue toue binding. Prducer

Figure 5: Control and Data Flow During Model Execution
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The model, however, is complicated by the concurrent semantics of the language, and
by the desire to exploit parallelism in the implementation. There are several places during
execution where more than one thread of execution may need to suspend until a condition
is satisfied, and all of these threads may be resumed in parallel. In addition, there is one
place in which new threads of execution need to be created, and may be started in parallel.

The first place in which threads may need to suspend is the consequence of the fact
that, between the time that a variables state goes to read and the time it goes to written,
other procedures may also need to read the variable's value. The protocol described above
ensures that only one thread will try to produce the value, but it is also necessary to ensure
that, once the variable's value is written, all threads which were waiting for the value will
resume. To this end, the variable's binding when in the read state is a list of continuations
which should be placed on the ready queue when the variable's value becomes available.
(Note that the ready queue is a message queue, not a continuation queue. Note also that
the message register mr is not used during resumption of suspended readers.)

The fact that, before a procedure invocation has committed to a particular clause
body, several outputs of that procedure may be requested implies that threads must
be suspended until commitment is complete, then resumed. This is the purpose of the
tobind element of the frame: it is used to hold i list of binding indices which have been
requested by callers. When commitment is complete, each binding index is packaged up
as the value portion of a message whose ip points to code in the procedure which will
bind the variable, and whose fp points to the invocation's frame. These messages are
then placed on the ready queue, so that all of the bindings may proceed in parallel.

New threads are created as the result of strict operations during commitment, i.e.,
operations which must have all argument values in order to proceed. An example of a
strict operation is the arithmetic operation +/2. This operation must have both argument
values before computing the result. Since all arguments are required, they should be
produced in parallel. Thus, messages which will produce all bindings are placed on the
ready queue. The frame's suspcount is used to keep track of when all required bindings
have been obtained, at which point execution may resume.

The execution model, now complete, is fully specified in Figure 6. Due to limited
space, we omit details concerning locking and variable update. Each procedure has three
entry points: read, create, and bind.

* The read entry point is always reached through a continuation, when a consumer
attempts to bind an unread variable. The message register mr will contain a pointer
to the variable to be bound. The read procedure ensures that a variable's binding
will be produced, and arranges for execution to resume in the consumer thereafter.

The bind entry point will be called in order to bind an output parameter of the
procedure. The message register mr will contain a binding index indicating the
parameter to be bound. read performs body calls necessary to obtain bindings for
requested output arguments.

The create entry point will be called in order to create a procedure invocation (typi-
cally by the creator of a variable). The frame pointer fp will point to an uninitialized
frame. The message register mr will contain a binding index. The call register cr will
contain a pointer to the caller's callfpi. The create procedure handles invocation
initialization, and then starts the commitment process, arranging to bind requested
output arguments as soon as commitment completes. Decision graph evaluation may
have to suspend waiting for bindings. If it does, it will resume when bindings are
available.

¾
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To switch threads:
* Dequeue a message m from the ready queue. Load rm.mr and m..f p. Jump to m. ip.

To read a variable V passed in mr in a procedure p:
"• If tar.state is written:

* Switch threads.
"* If mr. state is read:

* Find the binding index bi denoted by mr. Place bi in mr. Invoke p. bind.

To bind an output argument of a procedure p:
* If mr refers to a tell argument:

* Switch threads.
* If mr refers to a call argument:

"• Find the procedure q and binding index bi denoted by mr. Find the call index ci of
q. Place bi in mr.

"* If fp.callfpci is non-nil:
• Invoke q.bind.

"* if fp.callfpci is nil:
9 Set up the arguments of a call of q. Allocate and set up a new frame in fp. Invoke

q. create.

To create a new frame and bindings in a procedure p:
* Initialize the frame's commit-index, tobind, var, and callfpi. Place fp in cr .fp, marking

the frame as created. Jump to the decision graph for p.

To suspend decision graph evaluation:
* Set fp.suspcount to the number of variables being suspended on.
9 For each variable V whose binding is needed:

* If V.state is unread:
a Save the binding of V and a pointer to V as a message m. Mark V read, and add a

resume continuation to V's binding. Add m to the ready queue.
• If V.state is read:

* Add a resumption continuation to V's binding.
* Switch threads.

To resume a suspended decision graph:
* Decrement fp. suspcount. If fp. suspcount is non-zero, switch threads. If fp. suspcount

is zero, resume decision graph execution.

To commit to a particular clause:
9 Set fp.commit-index to the desired clause.
a For each tell output argument V:

o If V. state is read:
* Save the binding of V in some temporary register r. Bind V to its value.
* For each continuation c in r:

o Add a message containing c to the ready queue.
o If V.state is unread:

o Bind V to its value.
o For each call output argument V:

o If V. state is unread:
o Set V.binding to p.read.

o For each non-tell binding index bi in fp.tobind:
o Add a message <fp, p.bind, bi> to the ready queue.

* Switch threads.

Figure 6: Procedures for Demand-Driven Execution
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4 Discussion

There are a number of optimizations possible in the basic execution model. First, there
are several places during execution in which messages are placed on the ready queue, and
then a thread switch is done. Instead, some ready queue traffic can be avoided if, in the
spirit of the original idea, one of the messages is selected for direct invocation rather than
enqueuing and then immediately dequeuing it. Second, rather than adding messages to
the ready queue individually, some efficiency can be gained by adding the entire batch
at once. Indeed, if appropriate data structures are used, this may be almost as cheap as
enqueuing an individual message. Third, although locking is not specified at this level of
detail, it is apparent that much locking can be avoided due to the monotonic progression
of such operations as variable binding and commitment - a thread can check to see
whether a lock is necessary and avoid the lock if not. Fourth, since the mr is unused
during resumption, it may be used by the producer to return the requested variable's
binding to the consumer, avoiding an unnecessary variable reference.

The portion of the commit description labeled "'" in Figure 6 is optional: it is
unknown whether execution will be more efficient with it, since some indirections are
potentially avoided, or without it, since it implies extra locking and variable binding.

There are several possible criticisms of the execution model. We discuss three. 1)
Nondeterministic programs may invoke procedures which do no useful work. But any
implementation must schedule these procedure calls: only an oracle could tell which
invocation will produce the bindings necessary for nondeterministic execution to proceed.
2) Because of the change in termination conditions to achieve demand-driven execution, a
few existing CCL programs might not run correctly under this model. In particular, some
programs may deadlock or livelock because they expect to produce non-ground query
outputs. However, the changes needed to make existing programs operable should be
straightforward. Any slight incompatibility is outweighed by the fact that scheduling and
throttling of producers is no longer a concern, which should make it considerably easier
to write new code for this implementation. 3) Compilation details such as the storage
of temporaries in registers are outside the scope of this paper. However, because of the
frequent switching of environments during execution, it may be difficult to fully utilize the
large register set of modern CPUs for efficient temporary storage. The efficiency increases
due to demand-driven execution should outweigh this loss.

Historically, CCLs sacrificed backtracking in order to achieve efficiency. A consequence
was the elimination of all speculative or-parallelism: a worker will not attempt to execute a
given clause unless that clause will contribute bindings needed to answer the query. Anal-
ogously, our demand-driven implementation eliminates all speculative and-parallelism: a
worker will not attempt to execute a given body call unless that call will contribute bind-
ings needed to answer the query. This throttling of all speculative parallelism can lead to
great efficiency in problem solution, but it may not lead to the fastest solution.

The only work related to our proposed scheme of which we are aware is that of Ueda and
Morita I1 1, who describe a model which uses active messages to improve the performance
of producer-consumer stream parallelism. Our use of active messages, as well as some of
our fundamental philosophy, is essentially the same as theirs. However, their method has
important differences from ours. First and foremost, Ueda and Morita's technique still is
producer-driven rather than consumer-driven: it attempts only to optimize the overhead of
producer-to-consumer communication. Thus, none of the benefits of automatic demand-
driven execution accrue (although some methods of using programmer annotations to
inhibit producers outrunning consumers are discussed). Second, their technique requires
a sophisticated type analysis in addition to mode analysis. Finally, it is an optimization
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for certain limited situations only, in otherwise conventional execution.

5 Conclusions

We have presented a novel execution model for flat concurrent logic programming lan-
guages (CCLs), based on mode analysis and on continuation passing utilizing shared
variables. This model achieves demand-driven execution of CCLs, which at once achieves
greater execution efficiency and simplifies programming. This paper serves as a schematic
for those wishing to build high-performance demand-driven CCL systems. We hope to
begin work soon on an exploratory implementation of the technique, in order to gain
insights into its benefits and drawbacks.
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Exploitation of Fine-grain Parallelism in Logic Lan-

guages on Massively Parallel Architectures
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Abstract: Logic programming has been drawing increasing attention as a parallel pro-
gramming paradigm due to its ease of programming. However, an important question
remains: Can logic programs achieve scalable performance on general-purpose massively
parallel architectures? The problem is to determine how to efficiently incorporate paral-
lelism in logic programs within the architectural features of such machines. We frame the
question by identifying important issues that are crucial for scalable performance. We
have systematically developed the logical organization of a parallel execution model based
upon data-driven principles of execution. In this paper, we present some details of the
model, particularly its fine-grain parallelism support and the self-scheduled inference as
the basis for its distributed implementation.

Keyword Codes: D.1.6
Keywords: Logic Programming

1 Introduction

Logic programming based on universally quantified Horn clauses is becoming an accepted
programming paradigm for symbolic computing. PROLOG is indeed one of the most
popular logic programming languages because of its many advantages in terms of ease of
programming and declarative semantics. The advent of massively parallel architectures,
along with the inherent opportunities for parallelism in logic languages, should allow
salable performance during the execution of logic programs.

However, previous effort on the parallel execution of logic programs focused mostly on
shared memory multiprocessors [1]. With these machines, it is hard to expect performance
increasing proportionally to the number of processors since logic programs make heavy use
of the shared memory which then becomes a bottleneck [2]. Instead, considerable effort has
recently been made for the implementation with distributed memory multiprocessors [4, 5,
7]. In order to fully materialize the expected scale-up in performance on the architectures,
more study based on real implementations is, however, still needed.

In the research reported in this paper, we have selected message-passing, distributed
memory multiprocessors in the hope to reach a scalable performance of our logic pro-
grams. Further, each processor may possess additional hardware support for dynamic
synchronization. The memory is organized in a non-single address space. The latency of
local vs. remote memory accesses typically differs by several orders of magnitude, (the
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remote memory latency grows with the size of the machine while the local access time
remains more or less constant).

2 Parallel Execution of Logic Programs

The semantics of logic languages, i.e., the principle of SLD refutations, entail the explo-
ration of a search tree at runtime for scheduling and environment stacking reasons. The
globally shared property of the tree could render inefficient the parallel implementation
of logic languages on machines with a non-single address space, which is obviously an
acute problem in the distributed memory multiprocessors we are targeting for this work.
In this section, we summarize the three important issues to be addressed if we are to
achieve scalable performance of logic programs in distributed memory multiprocessors.
We further discuss our approach to solving the problems.

2.1 The Issue of Scalable Performance on distributed memory
multiprocessors

Distributed Scheduling: In shared memory systems, runtime scheduling can be per-
formed by a single centralized scheduler with a single copy of the search tree shared by all
PEs. The many advantages of this scheme cannot be transferred to distributed memory
multiprocessors due to their large system size and their memory structure. Scheduling
thus becomes one of the important issues when implementing logic programs. Some form
of distributed scheduling must therefore be implemented to observe performance that
is scalable. As for the search tree, it will be more advantageous to distribute it across
the nodes rather than placing it on a single node. Precise partitioning strategies will be
discussed later.

Multiple Active Tasks on a PE: The traversal of a shared search tree in search
of environment variables contained in other nodes may cause low system utilization due
to the remote accesses. To avoid these remote accesses, most other approaches have
recourse to binding methods which force memory accesses to be local in a PE. However,
the methods may impose an intolerable overhead with additional computations such as
environment closing and structure copying. It is the thesis behind our approach that the
idea of overlapping the computation with the communication caused by remote accesses
is valuable for logic programming on distributed memory multiprocessors as well as for
conventional imperative programming. From an architectural viewpoint, the approach to
parallel execution based on a single "active" thread in a PE [3] is not suitable for some
promising multiprocessors such as data-flow or multithreaded machines due to insufficient
fine-grain parallelism within a single thread. As opposed to a sequential single threaded
execution, we will therefore aim at maintaining multiple "active" tasks simultaneously in
a PE for the interleaved execution of fine-grain parallelism.

Exploitation of Fine-Grain Parallelism: The exploitation of fine-grain parallelism
for multiprocessors is obviously crucial as a means to hide memory latency. In addition
to unification parallelism, there exist more opportunities for fine-grain parallelism in logic
languages. They are generation parallelism obtained by preparing all the arguments of a
goal in parallel in the argument frame and instantiation parallelism uncovered by instanti-
ating all the components of a complex term in parallel when instantiating a complex term
(e.g., a list or a structure) in the heap during argument generation or unification. It is
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very expensive to exploit unification parallelism due to the requirement for garbage collec-
tion, because the failure to unify any one pair of arguments makes the unification of other
arguments being done in parallel useless. Thus, our model exploits unification parallelism
only for the head literals that always yield successful unification, whereas it exploits gen-
eration and instantiation parallelism with only a modest alteration of conventional logic
engines.

2.2 The Non-deterministic Data-Flow (Ndf) Model

As one solution to the above problems, we propose a parallel execution model which
includes architectural support for dynamic synchronization, such as data-flow and mul-
tithreaded architectures [6]. In our model, the runtime behavior of logic programs, i.e.,
search tree expansion and retraction, is modeled into the data-driven execution. The data-
flow graph representation for logic languages thus obtained is called the Non-deterministic
Data-Flow (NDF) graph. The principle of data-driven computation enables the inference
of logic programs to be scheduled at runtime in a distributed fashion.

Semantics of the (NDF) Graphs: The NDF graph retains the "conventional" data-flow
graph arcs, node firing upon data availability, etc. The graph can be considered a tagged
token dynamic data-flow graph in that tokens are tagged to carry information about
dynamic instances of the actors. As the two unique characteristics of the NDF graphs,
multiple incoming arcs are allowed to any one input port of a node and an undetermined
number of tokens with the same color are allowed on an arc at the same time (hence its
name, Non-deterministic Data-Flow (NDF) graph). Therefore, an arc in an NDF graph is
either a deterministic or a non-deterministic arc. Only a single token of one given color
is allowed on a deterministic arc, whereas multiple tokens of the same color may exist
simultaneously on a non-deterministic arc.

The NDF Graphs Representation: For logic languages which consist of Horn clauses,
i.e., definite clauses and goals, the NDF graph is composed of the following principal
classes of reentrant graphs; (1) A predicate graph is defined for each predicate since they
are invoked globally in a program. (2) A clause graph is defined for each clause for
flexibility in scheduling and allocation, although the scope of a clause is limited inside the
predicate to which the clause belongs. (3) Module graphs are defined for a set of common
modules that occur in predicates or clause graphs. Each graph comprises nodes with one
input port, two output ports and its graph body. The arcs connected to the ports are
assigned with special roles with respect to token types and properties with respect to
token colors; Input arcs are deterministic and activation (AT) tokens on the arcs serve to
activate either a predicate or a clause graph. The tokens are comprised of: 1) a mode field
to specify the execution mode of an activation (sequential or parallel mode), 2) pointers
to an argument frame and an environment, and 3) a backward-continuation field prepared
for the execution control such as backtracking. Solution arcs are paths for solution tokens
yielded from the evaluation of a graph. As multiple solutions may be generated, these arcs
are non-deterministic. A solution (SL) token contains an environment which incorporates
the new bindings done at evaluation time. Control arcs are deterministic arcs and tokens
on them have a special role in execution control. For example, failure (FL) tokens serve
to report the failure of a clause. They are utilized in detecting the backtracking condition
of a predicate node to which the clause belongs. Backtrack (BT) tokens serve to report
the failure of a predicate. Completion (CM) tokens serve to report that a predicate has
completed its evaluation.
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Figure 1: An example of the tree expansion and retraction

3 Data-Driven Self-Scheduled Execution

One special behavior of logic programs is that a search tree is expanded or retracted as the
computation progresses. Before we proceed with the data-driven execution mechanism,
we thus present a set of definitions related to the expansion and retraction of the runtime
search tree.

As for the tree expansion, we define two types; OR-node expansion denotes the expan-
sion due to the activation of an OR-node. This type of expansion is depicted by a thick
arrow in Fig. 1 (b). AND-node expansion denotes the expansion due to the activation of
an AND-node. This type of expansion is depicted by a thin arrow in Fig. 1 (b).

A search tree is retracted along the direction opposite to that of tree expansion when
an active OR- or an AND-node has failed. Given two nodes involved in a retraction, the
destination node of the two is not always determined at compile time. We thus say that
two nodes involved in a retraction are in a static retraction relation if the destination
can be statically determined; otherwise, they are in a dynamic retraction relation. In
an AND-OR tree, an AND-node and its parent OR-node are in a static retraction relation.
Nodes C 21 and P1 in Fig. 1 (c) are an example of this case. An OR-node for the first goal
in a clause and the AND-node for the clause are also in a static retraction relation. P1 and
C 11 in Fig. 1 (c) are an example of this case. On the other hand, in an AND-OR tree, any
non-leftmost child OR-node of a parent AND-node and the terminal AND-nodes expanded
from a predecessor child OR-node are in a dynamic retraction relation. The retraction
from P2 to C 21 in Fig. 1 (c) is one case of the dynamic retraction.

3.1 Clause NDF graphs and the AND-OR trees

Suppose that a clause contains n goals in its body. The NDF graph for the clause will
be G. and the predicate graph for the ith goal will be G,. The NDF graph G, contains
n graphi linkages for predicate graphs G,, (1 < i !5 n). The input and solution arcs are
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Figure 2: Example: an NDF graph for a clause

connected such that the input arc of G, becomes that of G,,, the solution arc of G,
becomes the input arc of Gp,÷,, and the solution arc of G0,. becomes that of Gc.

The control arc of GP, is connected to the control output port of G.. That is, the
BACKTRACK token from the predicate graph for the first goal results in the production of
a FAILURE token in the clause graph. The control output port of G, (1 < i __ n) remains
unconnected. However, the predicate graph changes the tag value of the control token on
the port so that the control token will be dynamically directed to its destination. The
details will be covered in later sections.

Fig. 2 (b) depicts the inside of an NDF graph for clause C11 in the example program
and the relation between the clause graph and its corresponding AND-OR tree. The NDF
graph for clause C11 is equivalent to a subtree whose root node is the AND-node for C11
in the AND-OR tree depicted in Fig. 2 (a). Again, the NDF graph for a predicate is a
subtree whose root node is the OR-node for the predicate in the AND-OR tree.

3.2 Forward Propagation: Tree Zxpansion
Forward propagation corresponds to the propagation of tokens for the purpose of realizing
a tree expansion in the NDF model. It is supported by input and output solution arcs in
the NDF graphs and consists of a series of relevant (predicate or clause) graph activations
by AT tokens on the arcs.

OR-node expansion: Inside a clause graph Go, a predicate graph for the first goal is
activated by an input AT token. Each SL token yielded from the activation of a predicate
graph leads to the activation of the predicate graph for the next goal. Here, the activation
corresponds to OR-node expansion in the AND-OR tree. In Fig. 3, the AT tokens issued
by Gc02, G002, and Gc,, inside Gp1 trigger the three instances of the predicate graph GA.
that correspond to an OR-node expansion.

AND-node expansion: The input AT token of a predicate graph G, comes to trigger the
activations of the clause graphs inside G(, each of which corresponds to the AND-node
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expansion in the AND-OR tree. In Fig. 3, the three activations of G031, Gc32, and Gc.3
inside the predicate graph Gp2 triggered by any token yielded from the activation of the
previous goal Gp, correspond to an AND-node expansion.

3.3 Backward P-opagation: Tree Retraction

Backward propagation denotes the propagation of tokens between two graphs that corre-
spond to two nodes either in a static or in a dynamic retraction relation in the AND-OR
tree. The control token, thus propagated, causes a specific action according to the type
of the token, e.g., backtracking or program termination detection. The following outlines
how the backward propagation is implemented and how the tree retraction is realized
with it.

Static Retraction: Backward propagation is done via a statically provided control
arc between a source and its destination NDF graph. Indeed, Fig. 2 (b) shows that
control arcs exist (i) from Ga,, the predicate graph for the the first goal of CI], to its
parent clause graph G,,, and (ii) from clause graphs (Gc2l, GC22 and G,,) to their parent
predicate graph G,,.

Dynamic Retraction: In this case, the destination graphs cannot be determined
at compile time. Backward propagation is implemented by retagging control tokens as
follows; (1) When the activation of a unit clause graph yields a solution, the continuation,
of the subgre.ph, that serves backward propagation, in the graph is placed in the backward-
continuation field of the SL token. (2) The activation of the first predicate graph caused
subsequently by the SL token extracts the continuation from the token and retains it.
(3) When a control token from a child graph reaches the subgraph that serves backward
propagation in an active predicate graph, the subgraph will take an appropriate action
according to the type, e.g., backtracking. It will then retrieve the continuation extracted
at step 1, form a new control token by tagging it with the continuation, and place the
token on the output control port. The control token will be routed to the subgraph inside
the unit clause in step I that created the SL token.

In order to clarify the above mechanism, we now show bow the backward propagation
operates to perform backtracking on the example program.

"* Step (i): In Fig. 3, each SL token, issued respectively by Gc21 , Gc,2 and Gc23
carries a continuation in which a continuation is expressed simply by a clause name
in the token.

"* Step (ii): The SL tokens activate three instances of GpA in Fig. 3. The continua-
t'ons are extracted and kept in each activation, which is graphically indicated in a
small circle beside G3 , in Fig 3.

" Step (iii): Inside GA, three clause graphs, Gcc,, Gc3, and Gc,,, are activated by
the token labeled C21. Suppose that every activation fails. Then, each activation
issues a FAILURE token, e.g., f3, f32, f3j. The propagation of FAILURE tokens
corresponds to a static retraction, as indicated in Fig. 3.

"* Step (iv): The predicate graph then retrieves the continuation extracted in step
(ii) and produces a BACKTRACK token bU21 in which 21 indicates the destination

'Continuation of a graph refers to a tag which consists of the color used for the activation and the
address of the graph.
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graph in the continuation, i.e., C.21. Bt is then propagated to a subgraph inside

Gc2 1, which in turn corresponds to a dynamic retraction as indicated in Fig. 3.

*Step (v): The BACKTRACK token sent to Go22, in turn, produces a FAILURE token
f21 in Fig. 4. Similarly, 122 and f23 are supposed to be generated through Step (iii)
and Step (iv) for GcS and GP23.

*Step (vi): Fig. 4 shows that the predicate graph C,', generates a BACKTRACK
token bt1 upon Fiu, f22 and o23. The propagation of bt 1 in Fig. 4 corresponds to a
static retraction since Pi is the first goal in Cri.

* Step (vii): The BACKTRACK token bet will be propagated out of the CFUE as a
FAILURE token fu in Fig. 4. The propagation corresponding to a static retraction

indicates that the execution of the program has finally failed.

4 Fine-Grain Parallelism Support in the NDF model

Parallel execution models of PROLOG mostly employ inference engines based on the War-
ren Abstract Machine (WAM), the storage model of which is designed under the assump-
tion of a single active task within each PE. With this storage model, the interleaved
execution of multiple active tasks is inherently very difficult due to its stack-based orga-
nization. Also, some instructions (e.g., unify-rn) add the complexity of the interleaved
execution because they operate differently depending on the mode (read or write) set to
the CPU [8]. Therefore, in order to exploit fine-grain parallelism, it is required to alter
the conventional storage model and to modify the above mode-sensitive instructions. In
this section, we briefly explain the support for fine-grain parallelism in the NDF model.
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4.1 Structure of Program Execution

Fig. 5 depicts one possible state of program execution in the NDF model. The activation
contexts are distributed over PEs during the data-driven execution outlined in Sec. 3.
There exist two types of activation contexts: (1) Predicate activation contexts are pri-
marily used for scheduling purposes such as backtracking and program completion. They
comprise an argument frame, the information related to the scheduling of the participat-
ing clauses, and the continuation of the backtracking subgraph discussed in the previous
section. (2) Clause activation contexts comprise a local environment frame as well as
conditional bindings.

4.2 Unification and Generation Parallelism

The NDF model exploits unification parallelism only for the head literals whose unifica-
tion always succeeds. They are determined through static analysis at compile time and
appropriate annotations are inserted in the code generated by the compiler. However,
the details are not presented here due to space limitations. Generation parallelism is
always exploited without restriction. One additional slot, which is initialized with the
number of arguments, is introduced in the argument frame for synchronization purposes.
Instructions used in argument generation (e.g., "put-zn' in the WAM) are extended so
as to decrement the value and to signal the completion of argument generation when it
becomes '0V.

4.3 Instantiation Parallelism

Instead of a stack, the heap memory in the NDF model is organized with frames managed
with dynamic allocation and deallocation. The two operational modes of the "unify-xxe?



233

i na avatem t e intrion fiqtieurpsN

. . .. ............ __ .

Figure 5: Basic structure of program execution in the NDF model

instructions in the WAM are separated into independent instructions for the purpose of
making the instantiation parallelism in head unification explicit. They are "sget-xxi' and
"sput-xzi', respectively for the read and the write mode. (The detailed description of
the instructions is found in [6].) The compiled code for unification of a head literal is
thus composed of two modules: one for pure unification and the other for instantiating
complex terms in the head literal. The frame-based heap and explicit instantiation code
on top of instructions designed for the cdr-coding, an optimized representation of list,
render the maximal exploitation of instantiation parallelism feasible.

Fig. 6 shows a code for head unification of an example clause. As opposed to the
WAM instructions, the "get-list" instruction has two additional operands, the starting
address of the routine to make an instantiation of the corresponding complex term and
the size of the term. The instruction allocates a frame with the size specified as the
first operand and then calls the routine specified as the second operand, provided the
dereferenced object of the argument is a variable. "sget-vwr" in line 5, that is to unify a
variable inside a complex term, is also extended to have a format similar to "get-list" in
line 3. Its operation has a similar role except the location and type of the term to unify
with. The extension is to meet the need to instantiate any cdr part of a list in the head.
For example, suppose that the argument term in A3 is [31Z], i.e., the list consisting of "3"
and "Z" as its car and cdr. After "get-list" at line 3, "sget-var-nc" at line 4 will bind "X"
with 3. At line 5, "sget-var" instruction will instantiate a list [Y] by calling "L2", and
then bind "Z" with its name.

5 Concluding Remarks

In this paper, we have described our self-scheduled inference mechanism and the cor-
responding fine-grain parallelism support in our NDF parallel execution model designed
particularly for massively parallel architectures. As opposed to other data-driven ap-
proaches which generally consider only a tree expansion, the NDF graph embeds both
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Figure 6: Compiled Codes for head unification

the tree expansion and retraction simultaneously into a data-flow graph. Thus, the NDF
model is more complete in terms of execution control such as backtracking and allows dis-
tributed scheduling as a viable option. Further, as opposed to other models for distributed
implementations, the capability to exploit fine-grain parallel by allowing multiple "active"
tasks on a PE facilitates the efficient implementation on massively parallel architectures.
In order to empirically verify the performance of the proposed parallel model, we have
implemented a compiler for a pure logic kernel (i.e., a subset) of PROLOG, together with
an appropriate translator for the Fujitsu AP1000 distributed memory multiprocessor, and
are now evaluating its performance.
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Abstract: This paper introduces a new abstract program representation, namely Syn-
chronous-Flow Dependence Graph (SFD Graph), which defines a generalization of DAGs
and has been designed for the compilation of SIGNAL. In this paper, we emphasize the
use of SFD Graphs for formal verification as well as implementation inference.
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1 Introduction
In addition to the classical requirements of reliability and efficiency for the software,
the spectacular technological advances in high performance computing has imposed a
third one: portability. To cope with these three requirements, the programming languages
community re-focused its attention in two complementary directions:

1. upstream, language design to bring portability. An outstanding work in this direc-
tion has been achieved from SISAL [5] which, although it is a fine-grain parallel
language, has been implemented efficiently on various architectures [3].

2. downstream, abstract representation design to gain reliability and efficiency. For
SISAL, this complementary approach yielded IF) [13].

Although the contribution of this paper aids both directions, it emphasizes the second
one. Section 2 presents SIGNAL, a dataflow language based on the (strong) synchronous
approach [6]; the specification of a variable illustrates the architectural independence of
SIGNAL. In section 3, we present the main singularity of SFD graphs: the equational
control model and how formal verifications over SIGNAL programs are performed with
it. Section 4 actually defines the concept of SFD graphs. Finally, section 5 describes the
inference of fine-grain parallel implementations from SFD graphs.

2 The SIGNAL Language
As SIGNAL is a dataflow-oriented language, it describes processes which communicate
through sequences of (typed) values with an implicit timing: signals. For instance, a
signal X denotes the sequence (xt)2 ,,1N/D) of data indexed by time.

This work has been initiated at IRISA. It has been completed at RAL and GMD where it has been
supported by an ERCIM (European Research Consortium for Informatics and Mathematics) fellowship.
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Kernel of SIGNAL

The kernel of the SIGNAL language includes the operators on signals and the process
operators. Four kinds of operators act on signals:

" instantaneous functions is a class of operators which encompasses all the usual
functions (and, <-, +, fft, ... ) extended to act on signals. Let f a symbol which
denotes a n-ary function acting on signals and If] the corresponding functioii acting
on values, the SIGNAL process Y := f{X1,..., XN} specifies that

Vt > 1 y, = If](x,... ,xn,)
In the specified behavior, one may notice that the value yt carried by Y at in-
stant t is equal to the function if] applied to the values held by X1, ... , XN
at the same instant. This matter of fact outcomes fromti a special specification ap-
proach: the (strong) synchronous approach (see [61 for an overview). In the dataflow
synchronous approach, the execution of the operators is assumed of zero duration,
only the logical precedence of values on a signal represents elapsing time. Therefore,
firing waits and implicit queueing of data are suppressed at the specification level.

" shift register explicits the memorization of data; it enables the reference to a
previous value of a signal. For instance, the process Y := X $1 defines a basic
process such that yi = vO and Vt > 1 yt = xt-1 where vO denotes an initial
and constant value associated with the declaration of Y. By contrast with the last
two operatoes, the signals referred in instantaneous functions or in the shift register
must be bound to the same time index, the same clock.

" the selection operator allows us to draw some data of a signal through some boolean
condition. The process Y := X when B specifies that Y carries the same value
than X each time X carries a data and B carries the value true (B must be a boolean
signal). Otherwise, Y is absent, i.e. Y carries no value.

"* the merge operator combines flows of data. The process Y := Xl default X2
defines Y by merging the values carried by Xl and X2 and giving priority to Xl's
data when both signals are simultaneously present.

The four previous operators specify basic processes. The specification of complex processes
is achieved with the parallel composition operator: the composition of two processes P1
and P2 is denoted (I P1 I P2 1) . In the composed process, the common names between
P1 and P2 refer to common signals; they stand for the communication links between P1
and P2. This parallel com" osition is an associative and commutative operator.

Specification of a memory cell

Externally, a variable is a device which memorizes the last written value -signal IN- and
delivers it -- signal OUT- when requested. The SIGNAL process VAR which specifies such
a device is presented in Fig. 1; this figure is a screen-dump of the SIGNAL block-diagram
editor.

The top box specifies the functional part of the memory: the content of the memory
carried by the signal MEN is defined by IN when it occurs; otherwise, it keeps its previous
value memorized by ZME. If ZMEM is initialized with zero, the sequence of values on IN,

EM and ZMEmaybe: IN : 2 5 8 6 ...
Z4E: 0 2 2 2 5 8 8 6 6 ...
ME 2 2 2 5 8 8 6 6 6 ...
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Fig. 1: Specification of the variable process VAR

This specification implies that the activity of memory device -the occurrences of MEN-
is not restricted to its memorizing activity -- the occurrences of IN.
The two basic processes included in the bottom box respectively specify:

1. the control of the memory device.

The event operator makes explicit the transition from signals to clock-signals which
are signals occurring only with the value true. If C is defined by C: event X ,
which is rewritten in the kernel of SIGNAL by C:- (X-X), a possible sequence of
values may be: X : 2 5 3 8 6 ...

C :t t t t t ...

The synchro operator specifies the synchrony of SIGNAL expressions. Therefore, the
upper basic process of the bottom box in Fig. 1 states that MEN is defined when a
write event occurs (event IN) or (default) an output is requested (event OUT).

2. the definition of the output. The memorized value carried by HEM is delivered in a
demand-driven manner, when OUT is requested: when( event OUT ).

The specification of this memory cell emphasizes the architectural-independence of SI-
GNAL programming. This independence outcomes from the synchronous specification ap-
proach and the dataflow/equational style of the SIGNAL language. Therefore, the infe-
rence of reliable and efficient implementations is achieved in two steps. Firsly, we intend
to validate the specification independently from any target architectures as sketched in the
next two sections. Secondly, we intend to inference of efficient and semantics-preserving
implementations as presented in section 5.

3 Control Validation & Inference
To comprehend the control model, let us recall the semantics of the selection operator.
The process Y := X when B specifies that Y takes the value of X if X carries one (i.e., X
occurs, X is present) and B is defined with true. Expressing the underlying control needs
the status present and absent for X and, the status present with true, present with false
and absent for B. The boolean algebra over {0,1} denoted by B =< C,V,A,O,1 >, is
taken to encode the status of the signals by:

present : 1 absent : 0
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Let us denote i a characteristic function which encodes the states of X at each
instant; i is called the clock of X; 5 is called the clock algebra

[b], [-'bl two characteristic functions or clocks which respectively encode
the states present with true and present with false of the signal B
the least element of B which stands for the never present clock;
it is used to denote something that never happens

I the greatest element of B, the always present clock

Among the above clocks, two equivalences hold: [bI V 1-b]- b and [b] A [-'b] = . The
first of these two equivalences means that, when a signal B carries a value, it is true or
false. The second equivalence means that a boolean signal B cannot carry true and false
at the same time. With this encoding, the of data implicit control relations of SIGNAL
processes are encoded in equations over B:

Y:= f(X1, ... , X) :: =
Y: X $1 .

Y:= X when B .. = [b]
Y:- Xl default X2 :: .•xlVx2

With this clock encoding, the production/consumption of data in a complex program
is translated into an intricate system of equations over B. An equivalent representation
is induced by projecting this equation system through the equivalence of clock. Beside
the definition of an equivalent and compact representation of control, this projection may
highlight control-flow inconsistency. For instance, the process

(IX:- A when (A>O) =aAia>Ol
IY:u X+A is encoded by

I) y= a

From this encoding, we deduce that a = a A [a>0] . The solutions' of this equation
stand for: there is no data on A (i = 0), or A is carrying a positive value ([a>0]=1). In a
classical dataflow interpretation of this program, if A holds a sequence of negative values,
X carries no data, no firing of X+A is possible and the FIFO memorizing the values of
A cannot be bounded. The above formal calculus exhibits such a possible dysfunction by
excluding the case [a>0]=O where an accumulation of data occurs. If non inconsistencies
are detected, the FIFO queues used to buffer the data between any two operators in a
dataflow interpretation can be bounded [4]. The reader interested in further details about
control consistency over SIGNAL programs is referred to [9].

For further illustration purposes, let us consider the process UNFOLD specified in Fig. 2.
This process converts a vector VECT -a spatial representation of data- into a sequence
of SCALAR -a temporal representation of data. Such a process, which may be useful as
front-end to achieve pipelined computations over VECT, has three components:

"* left box: a modulo counter. Its current value held by V is reset to 1 when RST occurs;
RST occurs when the counter reaches the limit defined by the parameter SIZE (a
constant value). Note that RST: a when V with T:,- ZV >=SIZE is the short
form of RST: 'I! when T

"* lower right box: an enumeration process of the SIZE elements of a vector signal OUT
according to the occurrences of V. OUT memorizes the last occurrence of VECT by
means of the process VAR specified in Fig. 1.

'since ([•bV[J-b]=i) • Cb = 0* [b] = 0)
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e upper right box: a control constraint synchro { VECT, RST } which specifies
that the enumeration of a vector must be completed before accepting another one.

I V:- ( 
1 I 

OT )d tkadt( ZV +O

I)1YT=f "m Z&AAIZ ) • 1

0 M~ffi- IMl[ S1IM H
I [)gMlm: WET V I

> )

Fig. 2: Specification of UNFOLD

Applied to the example UNFOLD, the projection of the clock encoding highlights no flow

inconsistency. From this projection, two classes of equivalent clocks are detected:

V, iv, scalar, o, , fi-en, zfri-Tm} {ý,tTtl
These two equivalence classes, respectively identified by ' and Qst, denote the signals
which have equivalent rates in their flow of data. If E denotes the initial equation system
over a set C of clocks, the projection of the control of UNFOLD is2:

C/- = E/_ = = [oil

Mathematical properties of the control representation

The production/consumption of data in a SIGNAL process is represented by a system of
clock equations over the clock algebra H =< C, V, A, 0, 1 > which is a particular boolean
algebra. As boolean algebras are lattices, an alternative representation of B is achieved
with a partial order:

<C,• <> with _<j 4= - Vj=j (€* 2'Aj=8)

From the basic equivalences [b] V [-b] = b and [b] A [-b] = 6, we deduce bA [b] = [b] and
bA [-b] = [-,b]. Thus, among the basic clocks, the following two orders hold [b] < b and
[-b] < . These two orders denote the property: a boolean signal carries a value more
frequently than one particular (true or false) value. By using this second representation
of the clock algebra, the equation Qat = [0] induces: rst < ¢.

From this inequality, we infer that ý is the condition which controls the entire activity
of the process UNFOLD. Beside the detection of control conditions used for implementations,
it is this lattice form of the clock algebra which is handled by the heuristic algorithm (it
is NP-complete problem) of SIGNAL compiler that projects a system of boolean equations
through the equivalence of variables. By this projection, the SIGNAL compiler simulta-
neously (a) verifies the control consistency to ensure an execution over a bounded memory
and (b) synthesizes a minimized control representation. In the next section, further vali-
dation of SIGNAL specifications is achieved by detecting deadlocks over SFD graphs.

2The projection through = does not delete the equivalence s = [9] since [0] represents some data
selection over the signal *; it may be seen as an "input" to the equational control model
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4 Synchronous-Flow Dependence Graphs

To comprehend the requested representation of the data part of SIGNAL programs, let us
consider the counting process of UNFOLD:

(I V:- ( 1 when RST )default( ZV+i ) I ZV:- V $1 I)

As expressed by the control equations (•;t _< u), the control state where k 0 and
rs"t = 1 is unreachable. According to the and reachable and active' states of 0 and
rst, the different instantaneous (i.e, the dependency outcoming from the shift register is
abstracted) data-dependence graphs that may occur are depicted in Fig. 3-a, Fig. 3-b.

fN(Vn) •-f(V
v with s-t = [I,]

rst = [--0

(a)?k=-1,r' =1 (b) =1,1I;=0 (c) SFD Graph

Fig. 3: Data-Dep. Graphs and the associated Synchronous-Flow Dependencc Graph

As ý identifies the equivalence class in which the clocks of V and ZV belong (cf p. 5), their
nodes exist in Fig. 3-a and 3-b. When Q = 1, V is defined by ONE which is a signal that
constantly carries the value 1; otherwise, the value of V is defined4 by the value of ZV.

The abstract representation of the flow of data using Synchronous- Flow Dependence
graphs (SFD graphs) is defined by superimposing all the possible instantaneous data-
dependence graphs. Superimposing all the data-dependence graphs drawn in Fig. 3-a
and Fig. 3-b induces the SFD graph depicted in Fig. 3-c. The paths taken by the data
according to the control are described over SFD graphs by means of two mappings fN and
fr: fN(one) = rst means that ONE occurs when RST occurs (rst = 1) and fr(zv, v) =
means that V is defined from ZV when RST do not occur. The new clock-label 1 denotes

the control state when RST does not occur: rs• = 1 when , = 1 and rast = 0 5.
A SFD graph is defined by connecting a dependence graph to an equation system over

clocks. A formal definition of SFD graphs is given in [12]. The SFD graph of the process
UNFOLD is presented in Fig. 4; square nodes symbolize interface vertices; The nodes mer
and zmem in this figure come from the instance of the process VAR.
A similar and complementary approach to ours has been achieved in [101 over the con-
cept of Synchronous Data Flow Graph. In this representation, the process UNFOLD which
enumerates on its output the size elements of the input vector is represented by a node:

3The state ¢ = 0, rsit = 0 is ignored since no signal is present at this state, i.e nothing happens
4For presentation reasons, we have substituted ZV + 1 by ZV.
5its definition is built over the negation of iýst which is denoted by i\ ist . Among the basic clocks,

the following equivalences hold: b \ [b] = [-b] and b \ [--b] = [b] . These equivalences respectively
means that, when a boolean signal B carries a value but not true, it is false and the converse. -Using these
properties (;7R = ý A (i \ iit) = , \ [f] = [-'¢]), the definition of rst is simplified in [-"01.
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oso
/= = _ [1

= {V,ZV,Z3,R,--,R
P, scalar, out}

fk,(;i) = {onevect}

Fig. 4 The Synchronous-Flow Dependence Graph of UNFOLD

Then, the consistency in the composition of foldings/unfoldings of vectors can be easily
verified over Synchronous Data Flow Graphs. SFD graphs can also be compared are DAGs.
A purely computational program is expressed in SIGNAL with exclusively instantaneous
functions: all the signals have the same clock. Consequently, a single clock labels the
associated SFD graph. In this case, we can ignored this (unique) labeling and SFD graphs
are equivalent to Directed Acyclic Graph (DAGs) [1]. Conversely, we assert that

SFD graphs define a generalization of DA Gs to represent purely computational
programs as well as programs with a complex if-then-else control structures.

By contrast with DAGs, the clock labeling provides SFD graphs with a dynamical feature.
This labeling imposes two constraints which are implicit for DAGs:

"* an edge cannot exist if one of its extremity nodes does not exist is translated into
the clock algebra, the image set of the mappings, by:

V(x,y)Er fr(x,y) < fN(x)AfN(y)

" a cycle of dependencies stands for a deadlock is verified over DAGs by definition;
over SFD graphs, it is expressed as:

a SFD graph < G,C,E,fN,ffr > is deadlock free iff, for every cycle
x1,...,xn,x1 in G, fr(zl,x2)Afr(x2,x3) A ... A fr(xn, xl) =0

Intuitively, this equation translates the properties that a deadlock does not exist if
all the dependencies of a cycle in a SFD graph are not present at the same time.

5 From SFD Graphs to Implementations

Reliability is the first requirement that an implementation must satisfy. From SIGNAL
specifications, we intend to satisfy this requirement in two steps. Firstly, SIGNAL specifi-
cations are submitted to some formal checkers as sketched in the two previous sections.
This reliability, thereby asserted at the specification level by this first step, is propagated
further by means of the inference of semantics-preserving implementations.

Beyo,, ! reliability, implementations must run efficiently. Efficiency is reached by spe-
cializing specifications with respect to the target architectures. For SIGNAL, a first step
towards efficient implementations is to give up successively with the two bases of SIGNAL's
architecture independence: its equational style (cf sub-section 5.1) and the null-time as-
sumption of the synchronous approach (cf sub-section 5.2).

6we restrict the application field of SFD graphs to it-thou-eise controlled programs because no
particular statement exists in Signal to specify iterations, they are only specified by means of temporal
recursion using the shift register operator; the process UNFOLD illustrates such a specification.
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5.1 Synchronous Implementation Inference
In the seek of an operational form of the control, we have considered two operational
models: automata and dataflow graphs. We choose the dataflow option because of (a) the
poor scalabilit y and (b) the not natural adequateness for parallelism of auomata. This
option can be expressed by extending the graph i art of SFD graphs. By keeping the same
representation , the detection of semantics changes like the introduction of deadlock are
easily detected by re-using the previously developed tools.

Practically, the extension of the graph part of SFD graphs comes to introduce control
nodes and dependencies. This extension is performed in two steps. Firstly, the mappings
fN and fr are translated into dependencies expressing the control of the flows of data.
For instance, as fN(vect•_= r;t means that the existence of vect depends on ýst, the
activation dependency rat ...... i vect is added. Also, if we assume that the control
expressed by fr" is implemented in the target node, a dependency rs--t wil be added
for the mapping fr(zaeun, ue) = -.

Secondly, the way the added control nodes are computed is specified by orienting, from
boolean selections to clocks the equivalences enclosed in E/=. For instance, rs [l ] is
implemented by 'k---• rut. As clock-signal C is a signal occurring only with the value
true, its clock is F: fN(E) = Z. Finally, due to the inclusion property that any SFD graph
must satisfy,, the added dependencies between x and y are labeled with fN(x) A fN(y).
Proceeding this way, the synchronous implementation of UNFOLD which is induced is drawn
in Fig. 5s.

..rot ................... r.-!-t-

...... 8t. C/=- f-- •ýStA• i~,z, m,

on {oevctf
(rat ratit

men, scalar, outl

Fig. 5: Synchronous implementation for UNFOLD

5.2 Asynchronous Implementation Inference

Indeterminism in asynchronous parallel languages is introduced through operators which
possess a semantics taking into account the absence of data at a given time (e.g the guar-
ded command in CSP). As execution times of these operators in an asynchronous approach
depend on the execution support, the absence of data at a given instant is environment-
dependent: the specified behavior of the whole system is environment-dependent. Owing
to the synchronous approach which assumes the null-time duration of operators, the
presence/absence of data is not dependent on the environment but is only application-
dependent. Therefore, evenif SIGNAL's semantics refers to absence, the specified behaviors
are deterministic.

"7V(x,y) E fr(1,y) !5 IN(x)AIN(y)
gFor readability reasons, the node i associated with the upper bound clock ,' and its outgoing de-

pendencies have been omitted.
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The implementation of SIGNAL's operators with asynchronous dataflow operators puts
this null-time assumption into question. Consequently, preserving the determinism impo-
ses a the control rewriting to ensure that the absence of data does not intervene. For
instance, let us implement the process V: ( 1 when RST )default( ZV+i ) by the
dataflow graph

w imoesi t fr(one, v) V fr(zv, v) = fN(v)S which imposes in terms of flow -(v)

The first line expresses a property over the flow of data; it is already verified by the
default operator: no change is required. The second line expresses a property over the
flow of control. It imposes that (a) fr(fs, v) must be equal to 0 and (b) the control node
rst and its outgoing arcs become useless in this particular implementation.Consequently
to this new labeling requirements, the activation of the control nodes must be rewritten
to ensure the inclusion property over the resulting SFD graph. Formally, the condition
that any control node c must verify is fN(c) Ž V(c,v)Er fr(c, v) .

In the example UNFOLD, it is sufficient to set fN(rist) equal to ý: fs becomes a
boolean signal equivalent to T. Finally, the SFD graph depicted in Fig. 6 specifies an
asynchronous implementation of UNFOLD. The reader interested in a complete description
of the rewriting process to infer asynchronous implementations is referred to [11].

'' vec me C/={sb
,- {st =

fVl(¢) = {mAv, zv, zmem, r-st,
mem, scalar, out}

fjl'(D) - {one,vect}

Fig. 6: Asynchronous implementation of UNFOLD

6 Conclusion

The main contribution of this paper is to define a new abstract program representation
called Synchronous-Flow Dependence graph (SFD graph). This new abstract program re-
presentation has beon designed to compile SIGNAL processes; SIGNAL is a synchronous
dataflow-oriented larnguage.

The major distinctive feature of SFD graphs is its equational control model which (a)
defines an architecture-independent thus portable control representation and (b) eases the
definition of tools which cope with applications with a complex control structure. SFD
graphs are defined by connecting dependence graph to this equational control model; SFD
graphs are a generalization of Directed Acyclic Graphs. This paper sketches tools for SFD
graphs which perform:

* Formal Verifications to ensure reliability. The two formal tools presented in this
paper enable: (a) to verify control flow consistency; it asserts that the execution can
run over a bounded memory and (b) to detect deadlocks.
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I !nference of efficient implementations. The inference of efficient implementations is
performed by relaxing progressively the two architecture-independence bases of SI-
GNAL. Control calculus is required to ensure the inference of a semantics-preserving
fine-grain parallel implementation.

SFD graphs and the tools presented in this paper are integrated in the SIGNAL compiler.
This compiler is included in a CAD software environment which encompasses a graphic
specification interface; a version of this CAD environment is commercially available.

Beside their utilization in the SIGNAL compiler, SFD graphs are used for the coupling
with the SYNDEX system [8]: from SFD graphs, the SYNDEX system infers implemen-
tations onto various distributed architectures. In addition, SFD graphs are used as a
common graph representation for the languages SIGNAL, LUSTRE [7] and ESTEREL [2].
More generally, SFD graphs constitute the conceptual basis of a proposal to the European
Community for an Eureka Project which involves academic and industrial laboratories.
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Abstract: Advanced architectural features of microprocessors like instruction level
parallelism and pipelined functional hardware units require code generation techniques
beyond the scor - of traditional compilers. Additionally, recent design styles in the area
of digital signal processing pose a strong demand for retargetable compilation. This
paper presents an approach to code generation based on netlist descriptions of the tar-
get processor. The basic features of the MSSQ microcode compiler are outlined, and
novel techniques for handling complex hardware modules and multi-cycle operations are
presented.'

Keyword Codes: B.1.4
Keywords: Control Structures and Microprogramming, Microprogram Design Aids

1 Introduction
Besides instruction pipelining, two important means for increasing the throughput of mi-
croprocessors have been identified by hardware designers: instruction level parallelism
and data pipelining. Instruction level parallelism comprises several functional units
working independently from each other, typically in combination with a VLIW type
controller, whereas the latter is often used in digital signal processors (DSPs) for ac-
celerating multiply-accumulate sequcnces. Exploiting these advanced architectural fea-
tures poses new challenges for compiler technology, since there is no longer a clear com-
piler/architecture interface via an instruction set. Furthermore, recent processor design
styles in the DSP area established a new view of the role of compilers in the design process.
The use of application-specific instruction set processors (ASIPs) provides a convenient
compromise between pure hardware implementations (ASICs) and pure software solutions
via programmable off-the-shelf processors [1]. Usually, ASIP architectures are not fixed,
but are subject to change during the design process. This implies "moving" pieces of
functionality between hardware and software, which in turn requires frequent re-mapping
of the system behavioral description onto the target architecture for performance evalu-
ation. In order facilitate compilation onto different targets, the code generation process
should be retargetable, i.e. no manual compiler adaption should be necessary. We propose
retargetability based on pure structural target descriptions at the register transfer level
(fig. 1). The advantages of this approach are manifold:

t This work has been partially supported by ESPRIT BRA project 9138 (CHIPS)



248

Torget Architecture Netlist e- tbe1010000 0

(=W Description Language) ComIpile 100010001001001

R i TO 001000100010001

i I > j THEN J.=kl
END.

Behavi.orI D.-iption
(High Level Language)

Figure 1: Retargetable compilation based on structural descriptions

1) A RT level netlist of the target structure is usually available during the system design
process.
2) Code generation is based on a model given in an easy-to-learn hardware description
language. Thus, the concept "naturally" fits into a CAD system for design automation.
3) The controller structure is part of the architectural model, therefore restrictions due
to encoding or sharing are detected by the compiler, and code generation is not restricted
to VLIW type controllers.
4) With the controller structure being part of the model, it is possible to map resource
conflicts to instruction conflicts, facilitating the scheduling phase.
5) Changes within the target architecture are easily reflected by adapting the architec-
tural model.
6) No re-compilation of the compiler itself is required when moving to a new target ar-
chitecture.

In this paper we present retargetable compilation techniques based on RT-level netlist
models, which are capable of exploiting instruction level parallelism as well as data pipelin-
ing. Binary machine code is generated for predefined structures, in contrast to synthesis
systems like CATHEDRAL [2] and CAPSYS [3], that perform binary code generation
for automatically synthesized structures, which is a less expendable task. The CodeSyn
compiler by Paulin [1] presents another approach to retargetable code generation for pre-
defined structures which is based on specification of data flow patterns within the target
hardware. However, these data flow patterns have still to be entered manually.

The paper is organized as follows. Sections 2 and 3 describe the modelling of archi-
tecture and behavior using the MIMOLA language. The basic steps for retargetable code
generation (preallocation, pattern matching and scheduling/compaction) are presented in
sections 4 to 6. These techniques have been implemented within the MSSQ compiler,
which is part of the MIMOLA Design System [4]. Several restrictions of MSSQ have now
been eliminated, e.g. pipelined modules and residual control are supported in the current
version. These novel features are described in section 7. The paper ends with practical
results and a conclusion.
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2 Architectural models

The target architecture is modelled as a netlist on the register transfer level based on
the MIMOLA language2 with a PASCAL-like syntax. RTL modules are defined by their
behavior based on a large set of primitive operations (arithmetic, logic, comparison, bit
manipulation).

2.1 Combinational and sequential modules
Modules performing multiple operations are assumed to have a distinguished control in-
put, e.g. a 16 bit ALU could be specified as follows, similar to a PASCAL procedure:

MODULE ALU (IN inl 2:(16:0); OUT res:(15:0); FCT ctr:(l:O));
BEGIN
ren <- CASE ctr OF

%00: in + in2;
%01: i1 - in2;
%10: iml "AND" Wn2;
%11: inl;

END-CASE;
END;

Depending on the value of the control input ctr, the ALU either computes addition,
subtraction or conjunction on the two data inputs inl and in2 or passes inl to the output
res. The data types are given as bitstrings in the format (<highbit>:<loWbit>). A 32
bit register with enabling signal and storing data at the rising clock edge is modelled by

MODULE Reg32bit(IN data:(31:0); OUT output:(31:0); FCT enable:(O); CLK clock:(O));
CONBEGIN

CASE enable OF

%0: "NOLOAD"; (e do not load
%1: AT clock UP DO Reg32bit := data; (* load at rising edge *)

END-CASE;
output <- Reg32bit; (* read always
CONEUD;

The CONBEGIN ... CONEND construct denotes concurrent execution, in this case the
register is always readable and concurrently stores input data at the rising edge when
enable = 1. Memory modules are modelled similarly, having an additional address input.
Modelling and code generation for multiport memories is provided.

2.2 Connections

Module interconnections are specified as a list of source and sink ports:

CONNECTIONS
ALU.res -> accumulator. input;
accusulator.out -> ALU.inl;

2See [5] for the complete syntax. Convertors from VHDL to MIMOLA are available, but we prefer

the latter throughout this paper for sake of better readability.
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Bit subranges of modules ports may be referenced explicitly. Busses require a separate
declaration due to their impact on the code generation process, i.e. the need for tristate
operations of bus drivers:

BUS databu-: (16:0);

2.3 Controller model

MSSQ was designed for code generation for microprogrammed structures. The underlying
generic controller structure is depicted in fig. 2. One distinguished memory module has to
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Figure 2: Generic controller structure

be marked as the instruction memory and one register as the program counter. The next
program address is determined by an arbitrary branch logic possibly dependent on several
condition codes. Five versions of control flow are considered during code generation:

1) increment program counter: The program counter is set to the following program
address.
2) unconditional jump: Continue at a certain program address.
3) then-branch: Branch if a condition is true, otherwise increment program counter.
4) else-branch: Branch if a condition is false, otherwise increment program counter.
5) two-way branch: Branch to address a, if a condition is true, otherwise branch to
address a2.

2.4 High-level transformations
Besides the netlist model comprising modules and interconnections, MIMOLA permits
description of replacement rules, i.e. correctness-preserving transformations of operations.
Such replacement rules allow compilation of operations that are not directly supported
by the hardware. Possible replacements include

REPLACE &a * 2 WITH fa + *a EiD;
REPLACE &a * 4 WITH "SHIFTL"(ka,2) END;

where &a denotes a formal parameter of the replar nent rule. Replacement rules may be
unconditional (i.e. are always applied) or conditional (i.e. the compiler decides on demand
whether or not to apply the rule). A set of standard rules, e.g. for replacing high-level
language constructs like FOR or WHILE loops by conditional jumps are provided in a
library. Other replacements may be specified by the user.
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3 Behavioral models

MIMOLA is a unified language for describing both structure and behavior. Behavioral
descriptions in MIMOLA are essentially PASCAL programs. Several deviations exist
regarding the allowed data types. MIMOLA programs permit bit-level addressing, direct
access to hardware storages and calling hardware modules like procedures. Therefore,
behavioral descriptions can be specified at different levels of abstraction, for instance the
following two programs are valid and equivalent:

PROGRAN AtaighL.evel IS PROGRAN AtRTLevel IS

TYPE Integer = (15:0); BEGIN

VAR a,b.c: Integer; DataRAN[O] := 3 * DataRANE[];
BEGIN accu :: DataRAN(O];
a :3 * b; MiD;
C a;

EMD;

In the latter, the variables a and b are assumed to be located at cells 0 and 1 of
memory DataRAI, and variable c has been physically mapped to register accu.

4 Preprocessing and preallocation

Several preprocessing steps are applied to the behavioral description.

1) Abstract user variables are mapped to physical memory locations.
2) High-level control structures (WHILE, FOR, REPEAT,...) are replaced by equivalent
conditional jump constructs. Only IF-statements may remain as control structures.
3) Unconditional replacement rules are applied.
4) Different implementations of remaining IF-statements are considered. This feature per-
mits extension of basic blocks and thereby higher degrees of freedom for the microcode
compaction phase. See [6] for an exhaustive discussion of IF-statement implementation.

During the preallocation phase, the Connection Operation Graph (COG) is constructed
that represents the hardware structure. Vertices correspond to modules, and edges re-
present interconnections. Semantical knowledge about module operators is exploited by
performing several local transformations within the COG. This includes entering addi-
tional paths for commutative operations and via operations. Via operations can be used
for propagating values from a module input to the output using neutrals. When an ALU,
for instance, can perform addition on the inputs ii and i 2, it implicitly has a via operation
on each of the two inputs by setting the other one to zero. Allocation of via operations
provides higher flexibility for data routing during code generation.

Analyzing the COG yields a set of assertions, i.e. necessary control codes that force
modules to perform certain operations. A partial COG for the example ALU of section
2.1 is shown in fig. 3, assertions are denoted by exclamation marks. Besides the COG, the
result of the preallocation phase is a list of partial control word settings (versions), each
able to force execution of a certain operation on a certain module. All different versions
are kept in order to provide greater fle.ability for the code generation phase.

5 Pattern matching and allocation

After the preprocessing phase, the behavioral description to be mapped onto the target
hardware consists of RT-level assignments. Assignment allocation in MSSQ is based on
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Figure 3: Partial Connection Operation Graph for an ALU

matching dataflow patterns with subgraphs of the COG.

5.1 Allocation of simple assignments

Considering the assignment accu :f DataRAM[0] + 17 the following subtasks have to
be performed:

1) Enable accu for loading data
2) Provide address 0 at DataftAM
3) If necessary, set DataRAM to a readable mode
4) Allocate the constant 17
5) Allocate the addition operation on an ALU
6) Route the operands DataRAl[0] and 17 through the circuit to the ALU inputs
7) Route the result to the target accu

The COG is traversed in order to find the required operators, in this case addition. Pro-
viding the necessary control codes and constants relies on the results of the preallocation
phase. Data routing is based on the COG interconnect structure and may require addi-
tional control codes, e.g. when exploiting via operations. If all subtasks can be solved, the
assignment is finally tranformed into a set of partial control word settings, concurrently
necessary to execute the assignment. If allocation fails, MSSQ generates an error message
indicating the failure reasons, e.g. missing operators or data routes.

5.2 Sequentialisation
Assignments containing complex expressions like

regfile[2) := (DataRAN[I] * accu) + (regfilefi] SHIMTL 2);

in general require to be sequentialised. In this case, MSSQ relies on a list of distinguished
possible temporary locations specified in the MIMOLA input and computes possible se-
quential versions. The resulting sequential assignments are treated as simple assignments.

5.3 Conditional assignments
After replacing high-level control structures in the preprocessing phase, assignments still

may contain IF-statements, e.g.

IF cond THEN accu := DataRAMNO];

for which various implementations exist. Currently, two versions are implemented in
MSSQ:
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Conditional jump versions The above example can be transformed into the sequence

IF coad THll PC := PC + 1 ELSE PC := <label>
accu := DatakAUEO];

<label>: <next instruction>

only requiring a multiplexer at the PC input. The assignment can be treated as a simple
assignment.

Conditional load versions require a hardware structure as depicted in fig. 4, which

often occurs in real microprocessors. Depending on a condition bit, the target storage
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Figure 4: Hardware for conditional load operations

module is either enabled or disabled. The data to be conditionally loaded is uncondition-
ally routed to the storage data input, and the statement can remain unchanged. MSSQ
tries to allocate both implementation versions. The better alternative is selected during
microcode compaction.

6 Scheduling and compaction

The MSSQ scheduler heuristically tries to pack as many microoperations as possible into
one machine instruction within each basic block. Since resource conflicts are mapped
to instruction conflicts, it is sufficient to check whether the corresponding partial
instructions are bit-compatible. Since all versions for execution of each statement are
kept during the allocation phase, in case of incompatible operations the scheduler may
select from several alternatives, and the shortest possible instruction sequence for each
basic block can be selected. In addition to scheduling allocated assignments, any compiler
based on structural hardware descriptions rather than on instruction sets has to prevent
undesired side effects for each machine cycle. Two sources of side-effects must be taken
into account:
Unused storage modules have to be disabled within each microinstruction in order to
preserve their current state.

Unused bus drivers have to be disconnected by allocating tristate modes in order to
avoid bus conflicts.

In general, additional control codes have to be supplied to prevent these side-effects. If
a side-effect cannot be prevented, e.g. due to a missing register enable line, compaction
fails and an error message is generated. The final result of the scheduling/compaction
phase is a binary microprogram which realizes the specified behavior on the given target
architecture.
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7 Extensions for complex modules

MSSQ lacks from generating code for hardware structures with complex modules, such
as pipelined modules, multiple cycle operations or multiple output operators. There are
also restrictions imposed by the book-keeping of temporaries, which prevent the support
of residually controlled modules.

We have overcome the deficiencies by developing a new approach, that accounts for
complex modules, and has an improved data routing and book-keeping mechanism.

7.1 Complex module classification
There is a number of complex modules present in contemporary processors. They can be
classified for code generation purposes - depending on the required couLrol scheme - as
described in the following.

Multiple cycle operations with fixed control are usually present at slow operators
whose delay exceeds the cycle time. The code generator has to provide the control code
stable during all cycles. The assumption, that each operation yields the result after an a
priori known fixed number of cycles (the delay) is made.

Multiple cycle operations with initial control require the control code in the first
cycle of an operation only. The operation takes multiple cycles to complete but needs no
further control to do so.

Multiple cycle operations with variant control occur at programmable modules.
The desired operation is decomposed into a sequence of more basic operations, each of
which with a specific control code. The code generator emits code for each basic operation.

7.2 Residual control
A register is connected to a control input of the module. The code generator is therefor'e
forced to load the desired control code into the register before the operation can be carried
out. Loading the control code may be done one or more cycles in advance, but it must
not be destroyed by an intermediate instruction.

7.3 Modeling complex modules
Whereas a key feature in the approach developed with MSSQ is the modeling of resource
conflicts as instruction conflicts, the new approach deals with a redefined notion of re-
sources, that suits the need for tracking the hardware resource usages over an interval of
cycles. A resource is a, register, a memory cell, a signal or an instruction field. A resource
may be occupied by a value in a specific number of cycles. A resource usage is represented
as a triple (r, v, i), where r is a resource, v is a value, and i denotes an interval of cycles.
The following pipelined ALU latches all inputs in each cycle. It is of the initial control
type.
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MODULE NulDiv(IN a,b,c: int; OUT o: long);
VAR la,lb.lc: int;
CONBEGIN
la := a; lb := b; lc := c;
CASE le OF
0: o <- la 0 lb;

1: o <- la / lb;
END

COVElD;

The resources of the module are the signals a,b,c,o and the latches la,lb,lc. The latches
are unconditionally loaded within each cycle. Such carriers are called pipeline registers.
The behavior analysis extracts sets of resource usages for each path from a data source to
a data sink. A path may include several pipeline registers, since pipeline registers are not
regarded as data sink. The book-keeping mechanism keeps track of the variable bindings
as well as the machine state. The machine state is a mapping of the resources to the
values. Variables carried at a resource are said to be bound to it.

7.4 Code generation

A set of resource usages may contain - or more outputs of an operation, a set of side
effects of the operation and the set of prerequisites (or assertions). A template is the
partition of a set of resource usages into A, . and R. The elements of A, S, R are called
assertions, side effects and results respectively. An operation is allocated when all prereq-
uisites are allocated. If the resource denotes an instruction field, the value is a partial code
version for the operation. If the resource refers to a register or storage cell, the book-
keeping mechanism is considered whether or not the required value is already present.
The set of side effects is used to update the book-keeping of the current machine state.
Allocation, data routing and compaction can influence each other. During allocation of
a statement, the allocator collects partial code versions. The code generator checks for
resource conflicts. Two resource usages ul = (ri, vi, I:), u 2 = (r 2 , v2 , i2 ) are conflicting, if
r= r 2 and v, 9 v 2 and il ni2 '. 0

Whenever a (non pipeline) register has to be used as a temporary, the resulting partial
code is tentatively compacted. If there is no valid schedule, because resource contention
is exposed, a backtracking step is initiated. This scheme results in an exhaustive search
for data routes.

With these extensions we expect a more versatile tool for a broad range of target
architectures. The backtracking approach in allocation, data routing and compaction
explores all versions for implementing a given basic block. Thus we can trade off the
quality of the generated code against the time spent in searching for alternative versions.

8 Results
The MSSQ microcode compiler has been implemented by a total of about 34,000 PASCAL

code lines and has been applied to a variety of real-life designs. These include:

"* Verification of the SAMP processor [7].

"* Code generation for the PROLOG processor PRIPS, which was recently fabricated
through EUROCHIP.
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* Assembly code generation for TI's TMS320C25 DSP, based on a novel code gener-
ation methodology [8].

Typical compilation rates are between 10 and 100 instructions per second on a SUN
SparcStation 10. This is acceptable for the intended application area, i.e. code generation
for flexible target architectures instead of standard processors.

9 Conclusions

A feasible approach to code generation for flexible programmable target architectures was
presented. Due to higher compilation times, retargetable compilers are not expected to
replace target-specific compilers for standard processors. The main application area can
be identified as code generation for ASIPs. According to Paulin [1], there is a clear trend
towards ASIPs as a design style for DSP systems. Compiler retargetability facilitates the
selection of an appropriate ASIP architecture that meets the given timing constraints.
In addition, the trade-off between hardware and software implementations of particular
functions is supported.
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Abstract: The programming language fleng is designed for highly-parallel execution of
non-uniform problems. We cannot expect data concurrency from these problems. There-
fore, fleng makes use of control concurrency which is derived from data dependency. Fleng
execution efficiency depends on load distribution and scheduling.

We implemented a fleng system on the parallel inference engine PIE64. Our compiler
performs static load partitioning -%nd scheduling. Static load partitioning improves con-
currency and reduces remote memory references. Static scheduling reduces synchroniza-
tion costs arranging process execution order. These static optimizations require data-flow
analysis. In this paper, we describe a data-flow analysis method in our system.

Keyword Codes: D.3.m
Keywords: Programming Languages, Miscellaneous

1 Introduction

In general-purpose highly-parallel systems, it is required to execute not only uniform
problems, but also non-uniform problems, such as symbol processing. There has been
many work for the uniform problems: for example, vectorizing and parallelizing compilers
are available these days. These systems make use of data concurrency; however we cannot
expect a lot of data concurrency from non-uniform problems. Therefore, these known
techniques are inapplicable to non-uniform problems.

Fleng is a committed-choice language which can extract control concurrency from any
problems. So, it is suitable for the highly parallel execution of non-uniform computation.

Efficiency of fleng execution depends on good methods for load distribution and
scheduling. We describe our fleng compiler system for the parallel inference engine PIE64
focusing on static load partitioning and scheduling.

Load distribution itself is not difficult. However, naive distribution causes a lot of
remote memory references and prevents efficient execution. The purpose of static load
partitioning is to improve memory reference locality as long as maximum concurrency is
maintained.

Hidaka [2] described static load partitioning based on execution profile. However, that
method had two shortcomings: (1) it required too much time for analysis, and (2) it was
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restricted by the initial input for the profiler. Here e show a method based on data-flow
analysis, which separates goals into several units along with the data flow.

The purpose of the static scheduling is to decrease the number of synchronization called
suspension. Suspension arises from inappropriate executior' order of goals. Therefore,
suspension can be avoided to a certain extent by rearranging the order. We arrange goals
according to a result of data-flow analysis.

Fleng and PIE64 are briefly described in section 2. Section 3 gives an overview of the
whole system. The compiler and its static load partitioning and r heduling methods are
described in section 4. Finally, we describe thq current status and ,uture plans in section
5.

2 Fleng and PIE64

2.1 Committed-Choice Language fleng
Fleng is a member of a logic-based language family called Committed-Choice Languages.
This family is a descendant of concurrent logic languages[3]: GHC and KLI[1] are well
known members of this family.

A fleng program is a set of predicates. A predicate consists of a set of clauses. Clause
is the minimum fragments of the program. A clause consists of a head and bodies. We
separate head and bodies by ":-".

Head : -Bodyl, Body2, Body3.

Basically, a clause is a description of a rewriting rule, and the head represents the pattern
which the clause can rewrite.

One of the most notable features of fleng is a single assignment variable. Variables have
only two states: at creation time variables are unbound and by binding they change to
a second state called bound. Binding is similar to assignment, but once bound to one
datum, the variables never revert to unbound, and cannot be bound to other datum. A
second and any subsequent binding attempts will have no effect.

Arbirar/ Se --e Gol. ... User

Headw

unificof, RodurIon

Figure 1: fleng execution model
Figure 1 shows a diagram of fleng execution. The basic execution unit of fleng is called

a goal. While a fleng program is executed, there are many goals in the goal pool. Roughly
speaking, the number of the goals in the pool is regarded as a measure of parallelism at
the time. Fleng execution can be decomposed into three steps; (1) arbitrarily select a goal
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from goal pool, and then, (2) rewrite the goal to other goals, at last, (3) return new goals
to the goal pool. The rewriting is called reduction, and is done by the rule described by
a clause which has the same name as the goal. A user starts execution by placing a goal,
called the top goal, into the goal pool. When the goal pool becomes empty, execution
stops.

To rewrite one goal, it is necessary that arguments of the goal are sufficiently bound
to match with some of the clauses. If this condition is not met, it is impossible to rewrite
the goal at that time. To wait for the appropriate condition, the fleng system suspends
the goal according to the variable which is needed for the condition. This means that the
goal is removed from the goal pool and, until the variable is bound, the goal will never try
to be rewritten again. When the variable is bound, the system puts the goal into the goal
pool again. This operation is called activation. Because of this synchronization system,
no matter how we select a goal or when we rewrite it, it is guaranteed that result of a
program execution is not affected by goal execution order.

In fleng, synchronization is expressed as a binding to variable and pattern match in
clause head. This implicit synchronization enables fine-grained highly-parallel execution.

2.2 Platform for fleng : PIE 64
PIE64 is designed for fleng, and has dedicated hardware to reduce the costs for commu-
nication and synchronization, and to support load balancing. PIE64 also has hardware
which supports parallel management.

Overview of PIE64 PIE64 consists of 64 processing elements called IU(Inference Unit)
and two interconnection networks. The most notable feature of each processing element
of PIE64 is to have three kind of processors. We divide parallel execution into three
parts; computation, communication/synchronization, and parallel management, and as-
sign three kind of processors these roles.

To reduce the cost of remote communication, PIE64 adopts latency-oriented intercon-
nection networks, dedicated communication processors, and computing processors with a
multi-context facility to hide latency. The communication processors also have a facility
to support synchronization directly, to reduce the cost of synchronization. To support
the load distribution, the interconnection network has a facility called automatic load
balancing. With this facility, all IU can have access to the least load level, and the least
loaded IU.

IU: Inference Unit An IU has three kinds of tightly connected processors: UNIRED
(Unifier / Reducer) for fleng execution, NIP ( Network Interface Processor ) for commu-
nication and synchronization, and MP( Management Processor ) for management.

UNIRED is a dedicated processor to fine-grained symbol processing[4]. It is designed
with tag architecture and a dedicated instruction set. It also has several special features
for organizing of parallel machines. The pipeline of UNIRED is shared by four contexts
to hide remote reference latency.

NIP has two roles; communication and synchronization. The memory of PIE64 is
distributed in each IU, but has one global address space. NIPs organize these distributed
memory into a distributed shared memory. NIP also supports synchronization using
single-assignment variable. Synchronization among lUs has to include some communica-
tion, so it is inevitable that one processor is in charge of these two roles.
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MP is dedicated to parallel management. We use a general purpose SPARC processor,
as MP.

3 Fleng system on PIE64

In this section, we review requirements of the system, and then show a sketch of our
system.

3.1 Load Distribution and Scheduling
Load distribution and scheduling are important problems for implementing highly-parallel
language systems. The optimum solution to these problems depends on the run-time
situation. However, it is very difficult to predict perfectly the run-time situation of a
non-uniform application. Therefore, it is probably impossible to obtain the optimum load
distribution and scheduling using only a compiler.

Load Distribution Requirements for load distribution are as follows:

e To extract concurrency,
9 To balance load,
* To reduce communication.

First, sufficiently high concurrency has to be extracted to fill all the IUs with some
goals. Second, load, i.e. goals and data, have to be balanced among lUs in order to avoid
overload on particular lUs. Third, the goals and data have to be allocated in such a way
as to reduce the communication between IUs.

Scheduling An important requirement for scheduling is to minimize synchronization
cost. Synchronization cost in PIE64 is low, because PIE64 hardware supports synchroniza-
tion. However, some cost still remains. Suspension causes context changes on UNIRED
and MP, and their costs also cannot be neglected.

Suspension arises because of inappropriate execution order of goals. Assume that
two goals, a producer and a consumer, share one variable. The producer will bind some
value to the variable, and the consumer requires the value for reduction. If the consumer
is scheduled before the producer, the consumer suspends. However, if the producer is
scheduled first, neither of them suspends. Therefore, scheduling by considering data
dependency reduces suspension.

3.2 Overview of fleng system

To cope with load distribution and scheduling, we have adopted combination of static
optimization and dynamic control.

The fleng system for PIE64 consists of a compiler system and a run-time system. On
PIE64, compiled code on UNIREDs and a run-time kernel on MPs cooperate to execute
fleng programs.

Compiled code on UNIRED can concentrate on computation, since MP and NIPs take
charge of other bothersome tasks. UNIRED only receives a goal from MP, and reduces
it, and sends back new goals to MP. If a goal cannot be reduced, UNIRED simply quits
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execution. MP and NIPs are responsible for suspending the goal. Whenever remote access
is required, UNIRED automatically sends a command to NIP.

The principal role of the run-time kernel is goal management. The goal management
is to fill up all UNIREDs with goals. The goal pool is distributed across all IUs in order
to avoid a bottle neck. Each MP manages a goal pool on the IU, i.e. it supplies UNIRED
goal, gets new goals from UNIRED, and when the need arises, sends goals to oth#r Ills
or recieves goals from other IUs.

Load distribution on PIE64 Load distribution on PIE64 is handled at three stages
as shown below.

I Static load partitioning by compiler,
2 Dynamic load distribution by run-time kernel,
3 Dynamic load balancing by interconnection networks.

In the first stage, the compiler partitions loads; i.e. newly created goals and data.
The role of the first stage is to enhance memory reference locality as long as all possible
concurrency is maintained. The compiler detects data dependency between goals to allo-
cate related goals to the same IU. In the next section, we will describe the details of this
partitioning.

In the second stage, using run-time information, the run-time kernel decides whether
the load should be distributed. Under a situation that all other lUs are sufficiently loaded,
distributing load is not only useless, but can worsen reference locality. Therefore, under
such a situation, the run-time kernel keeps all newly created goals inside the IU to suppress
excessive concurrency.

At last, in the third stage, the automatic load balancing facility of interconnection
networks is used to send goals to the least loaded IU.

4 Compiler and Static Optimization

4.1 Overview of Compiler System

Figure 2 shows a brief diagram of the fleng compiler system. This system consists of a
mode analyzer, an optimizer and the compiler. All of them are written in fieng themselves.
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...:::: ::: ::: : ::. ..... .

Fiue2Cln ompiler system

Preprocenuo
Ubie~~ L.a .i~ nn .~l ... ..

Compiler

UNIRED ASa"m
4Wm. UECOWF Flo

MIE 64 "ln Systm

Figure 2: fleng compiler system
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The optimizer does load partitioning and scheduling according to information obtained
by the mode analyzer. Decisions made by the optimizer are added to the program as an-
notations. The compiler generates UNIRED assembly code according to the annotations.
We separate the optimizer and the compiler to evaluate various kinds of optimization
policy without any modification to the compiler.

4.2 Annotations

We use annotations to inform the compiler about the decisions determined by the opti-
mizer.

The syntax of the annotation produced by the optimizer is as follows, where Item is a
variable, a structured term or a body goal.

Item C[ annotation), annotation2,.... I

The result of load partitioning is specified with the following annotation:

a local
This annotation means that the goal/data should be allocated in the local IU.

* on( label)
This annotation is used in the head part of clauses. The IU where the data resides
is tagged as label.

* to( label)
This annotation means that the goal/data should be allocated in the IU tagged as
label.

* any( label)
This annotation means that the goal/data should be allocated in the least loaded
IU. The IU where the goal/data is allocated is tagged as label.

The result of static scheduling is specified with the following annotation:

* sequence( number )
This annotation specifies an execution order of the goals which are allocated in the
same IU.

4.3 Static load partitioning and Static scheduling

As mentioned in section 3, the role of static load partitioning is to enhance memory
reference locality as long as all concurrency is maintained. To achieve this objective, data
dependency information is required.

The point of static scheduling is to arrange goal execution order. This also requires
data dependency information. In both cases, we get the information by data-flow analysis.

4.3.1 Simple mode analysis

Our data-flow analysis consists of two phases; mode analysis and data-dependency anal-
ysis. In the first phase we determine the mode of predicates. In the second phase, using
the mode information, we analyze the data dependency in each clause.

Although there are several work on mode system for the committed-choice languages,
they specify only input/output mode. The second phase requires data-dependency infor-
mation, we create a new mode system which includes data-dependency information.
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Predicate mode is represented by a list of argument modes. Our mode system uses
the following 5 argument modes.

++ strong input: required immediately
+ input: required but not immediately

-- strong output: guaranteed to be bound
- output: not guaranteed to be bound
? unknown

For example, consider the following program fragment:

foo(a, B):- B = b.

This predicate requires that the first argument is bound, and guarantees that the second
argument is bound after the execution. As a result, the mode of this predicate is specified
as r++, -- ].

To get full mode information, a global analysis is required. However, local analysis
will be enough to get the data-dependency information. Therefore, we decided not to do
global analysis.

The mode of predicates is determined by synthesizing mode of clauses. Clause mode
is also specified as a list of argument modes. The mode of clause is determined by the
mode of each arguments. The argument mode is determined by the following rules:

e In the head, if the argument is not a variable, the argument mode is specified as
strong input.

* In the head, if the argument is a variable, and there are some goals which binds the
variable to some non variable object, then the argument mode is specified as strong
output.

The actual rules are somewhat more complicated, but omitted here.
The n-th argument mode of a predicate is synthesized from the n-th argument modes

of clauses. Each argument mode is determined by the following rules:

"* If all the modes of clauses are same, the mode is taken as the argument mode.
"* If strong input and input conflict, input is selected.
"* If strong output and output conflict, output is selected.
"• If unknown and any other mode conflict, other mode is selected.
"* If input and output conflict, unknown is selected.

4.3.2 Data-flow graph

From the predicate mode, we can get a data flow directed graph, using variables and
goals as nodes, and data dependency as arcs. The strong-input mode indicates that a
goal depends on an argument which have the mode. The strong-output mode indicates
that an argument which have the mode depends on a goal. A data-flow graph can be
obtained by the following steps:

1. Treat variables as data nodes.
2. Treat body goals as goal nodes.
3. If a body goal has a strong input mode on a variable, make arcs from the data node

to the goal node.
4. If a body goal has a strong output mode on a variable, put arcs from the goal node

to the data node which represent the variable.
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4.3.3 Load partitioning and scheduling

Load partitioning and scheduling problems can be resolved into the data-flow graphs
partitioning. For any walk in the graph, any two goals on the walk can not be reduced
simultaneously. In other word, for any two goals, no graph walk includes both of them,
they can be reduced simultaneously. Therefore, the load-partitioning problem can be
solved by partitioning of data-flow graph.

The scheduling problem can also be solved by graph partitioning. In the data-flow
graph, upstream goal should be reduced in advance. Therefore scheduling can be done
by arranging the goals according to the graph walk.

We partition the data-flow graph with the following steps:

1. Select one of the longest walks as the target arbitrarily.
2. Remove all the goal/data nodes and arcs which are included in the target walk, and

allocate them to one processor;
3. By the previous o ,eration, if some data nodes are isolated from the graph, allocate

the data node anc arc to the same processor as 2;
4. By operation f:, If some goal nodes are isolated, allocate them on another processor;
5. Repeat these ope :ation until the graph beromes empty. If the graph is separated

into plural graph!;, partition each graph.

4.3.4 Example

We show an application of our method to a program fragment as an example. The
following clause is a part of an n-queen program. The predicate mode of add, sub,
equal, and chk are [+÷,+-,--j,['++,+,--]., [++,++,--1 and [++,I.,?,?,?,?,?,?,
respectively.
check(P, D, L, [QILpO], Lp, AO, A):-

add(Q, D, Sum 0 [any(I)EG (to(,), sequence(l)],
equal(Sum, P, RI 6 [to(l)6•@ [to(i), sequepce(2)],
sub(Q, D, Dif 6 [any(2)])@ rto(2), sequence(1)],
equal(Dif, P, R2 0 [to(2)J)4 [to(2), sequence(2)],
chk(R1, R2, P, D, L, LpO, Lp, AO, A) 4 [to(2), sequence(3)].

Figure 3 shows a diagram of data flow and load partitioning specified by the annotations
in the above list. We can see that the graph paxtitioning is done according to the data
flow.

oI p 1. UA- U B

sub b

.. .... :.....:

Ue U UE
.. ....... ... A: Optimized partitioning B: Naive pertitloning

Figure 3: Load partitioning Figure 4: Data/goal location
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Figure 4:A shows the resulting allocation. The large square represent each IU, and arcs
between goals and data represent data references. Figure 4:B shows the worst allocation
caused by naive load partitioning; it separates all the goals and locates all the data on the
local IU. By optimal partitioning, only one remote data reference takes place. In contrast,
all the memory accesses are remote with naive partitioning. Note that concurrency is not
reduced by the optimized partition, even though only two I'Ts are used.

4.4 Preliminary Evaluation
We have done preliminary evaluation to gain some understanding about the relation
between program concurrency and the effect of our dynamic/static distribution method.

We customized a fleng interpreter on PIE64 for evaluation. The interpreter distributes
goals and data as specified by the annotations. It shares the run-time kernel with the com-
piler system, and has the dynamic load-distribution facility mentioned above in Section
3. The facility can be disabled to evaluate the facility itself.

For the evaluation, we used a well-known program "primes", which finds all prime
numbers less than 200. This program has relatively low concurrency; 15 - 20 on average.
We executed several of "primes" simultaneously, to get variation in concurrency.

Among the "primes", there are no communication, therefore, the absolute value of
locality will be different between the result of this experiment and real applications.
However, the tendency of the locality against the program concurrency will be same.

0.95 1.4

0.9 Dynamic ON Statc ONF Dynamic ON: Static ONDynamic ON: Statc OFF 13Dynamic ON: Static OFF...

S0.85 Dynamic OFF: Static OFF , .3

0.00

S 0.7 1.1

0.65

0.55 9'

0.5
0.45 0.8; '°

5 I¢ 15 20 2 305 10 is 20 25 3D
Number of prmes Number of primes

Figure 5. Locality of primes Figure 6: Relative speed up

Figure 5 shows the memory reference locality against the number of "primes". The
lowest graph shows the most naive method, i.e. no dynamic load distribution and no static
load partitioning. It always shows same low locality. The middle graph shows the result
of the dynamic load-distribution. When the concurrency is high, it shows enough locality,
however, the method shows no improvement in low concurrency area. The highest graph
shows the result of the combination of the dynamic load distribution and the static load
partioning. The graph keeps highest locality among three.

The higher the concurrency becomes, the smaller the difference between the two
graphs. When all other lUs are loaded, the run-time kernel does not distribute any loads
to suppress excessive concurrency. Therefore, when the concurrency is high, the effect of
the dynamic load distribution dominates, and it hides the effect of static partitioning.

Figure 6 shows the relative speed up of statically load partitioned programs compared
with the naive one, against the number of "primes". The dynamic load-distribution
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facility is enabled in both case. Note that the reduction speed of interpreter is low, so the
remote access penalty appears to be relatively low. As implied by the memory reference
locality, the higher the concurrency becomes, the smaller the relative speed up.

From the results described above, we conclude that; (1) the dynamic load distribution
is not enough in low-concurrency area, (2) the static load-partitioning is effective to fill
up the weak point of the dynamic load distribution.

5 Conclusion and future work

We have described a fleng compiler and its static load partitioning and scheduling based on
data-flow analysis. Static load partitioning is effective, especially in the low concurrency
area.

For future work, the following are considered to be important:

"* Using profiling data in static scheduling,
"* Adopting more complicated static analysis,
"* Evaluating our whole system.
Here, we only use static data. However, for selecting targets from the several longest

walks, simple profiling data will be useful.
Our mode analysis is relatively naive and simple, and it restricts static optimization.

We are planning to establish more complicated mode analysis. With that analysis, other
static optimization is possible; for example, grain combination.

Finally, evaluation of our whole system is required, including the run-time kernel.
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has always been a problematic issue. This paper presents and formalizes an algorithm
for transforming a significant class of higher-order programs, into a form that can be
executed on a dataflow machine. The meaning of the resulting code is described in terms
of Intensional Logic, a mathematical formalism which allows expressions whose value
depends on hidden contexts.
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1 Introduction

One of the most appealing features of the dataflow model of computation, is its close
relationship with functional programming. This is evidenced by the fact that all the
well-known dataflow languages are functional in nature [1]. Moreover, it is generally easy
to implement first-order functions on a tagged-token dataflow machine. This is achieved
through the use of appropriate tag manipulation operations, which can be thought of as
having a "colouring" effect on tokens [2]. However, this scheme fails when higher-order
functions are considered. In practice, higher-order functions are implemented using non-
dataflow mechanisms such as closures [31, an approach which is against the basic principles
and spirit of tagged-dataflow.

This paper considers the implementation of a significant subset of a higher-order func-
tional language, using only simple dataflow concepts (such as tags). Given a program of
order N, the technique gradually transforms it into a zero-order program extended with
appropriate context (tag) manipulation operators. The algorithm is initially presented at
an informal level and illustrated by examples. The last sections of the paper contain a for-
mal definition of the transformation algorithm. The paper concludes by briefly discussing
implementation issues and possible extensions.
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2 The First-Order Case

Before considering higher-order programs, we outline the approach we adopt for the first-
order case; this was initially developed in [16] and also described in [6]. The algorithm
given in (16] transforms a first-order program into a set of zero-order definitions that con-
tain context manipulation operations. As the semantics of the resulting code is based on
Montague's Intensional Logic [10], the resulting definitions are also referred in [16] as in-
ttnsional definitions. The functional language adopted in [16] is ISWIM [9]. Programs are
initially flattened using a technique similar to lambda-lifting [7]. The following algorithm
is then applied to this flattened code.

1. Let f be a function appearing in the program. Number the textual occurrences of
calls to f starting at 1.

2. Replace the ith call of f by calli(f).

3. Remove the formal parameters from the definition of f, so that f is defined as an
ordinary individual variable.

4. Introduce a definition for each formal parameter of f. The right hand side of
the definition is the operator actuals, applied to a list of the actual parameters
corresponding to the formal parameter in question. The actual parameters are
listed in the order in which the calls are numbered.

As an example, consider the following program:

result = f(5)
f(x) = inc(x + 1)
inc(y) = y+ I

The following zero-order intensional program is obtained, when the algorithm is applied:

result = calll(f)
f = calli(inc)
inc = y+l

x = actuals(5)

y = actuals(x+ 1)

An execution model is established by considering the calli and actuals as operations on
finite lists of natural numbers (referred from now on as tags or contexts). Execution of the
program starts by demanding the value of the variable result of the intensional program,
under the empty tag [ ]. The operator calli augments a tag t by prefixing it with i. On
the other hand, actuals takes the head i of a tag, and uses it to select its ith argument.
Formally, the semantic equations as introduced in [16], are: 1

(calli(A))t =Aiilt
(actuals(Aj,...,An))[ilt] = (Ai)t
c(Al,.... A,)t = c((Am),,... , (An)t)

'The notation [ilt] denotes a list with head i and tail t.
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where A, Ai,...,A are values in the target (intensional) language and c is an n-ary
operation symbol. In particular, individual constants in the target language have the
same value under any tag, e.g. (2)t = 2, for all t. The evaluation of the program
proceeds by applying the above semantic rules; every time a variable is encountered, it
is replaced by its defining expression (for an example execution, see [121). The technique
just described has been extensively used in the implementations of the Lucid functional-
dataflow language [15] as well as in other Lucid-related languages and systems.

3 The Higher-Order Case
The main idea for the generalization of the technique to higher-order programs, was
initially proposed in [14] and has since been extended and formalized in [111. In this
section we outline how the technique can be applied to a significant class of higher-order
programs. Intuitively, the language we adopt allows a Pascal-like use of higher-order
objects:

1. Function names can be passed as parameters but not returned as results.

2. Operation symbols are first-order.

The main idea of the generalized transformation is that an N-order functional program can
first be transformed into an (N - 1)-order intensional program, using a similar technique
as the one for the first-order case. The same procedure can then be repeated for the new
program, until we finally get a zero-order intensional program.

The idea of tags is now more general: for a program of order N, a tag is an N-tuple of
lists, where each list corresponds to a different order of the program. The operators are
also more general as they have to manipulate the new, more complicated contexts. As the
transformation for the higher-order case consists of a number of stages, we use a different
set of operators for each stage. For the first step we use the operators actualsN and
call(N,i), where i ranges as in the first-order case. For the second step, we use actuals(N-l)
and call(NI,i), and so on.

The code that results from the transformation can be executed following the same
basic principles as in the first-order case. In the following, we present the transformation
algorithm and describe the semantics of the generalized operators. Consider the following
simple second-order program:

result = apply(inc, 10)
apply(f,z) = f(x)
inc(y) = y+ 1

The function apply is second-order because its first argument is first-order. The general-
ized transformation, in its first stage eliminates the first argument of apply:

result = (call(2,j)(apply))(l0)
apply(X) = f(R)
inc(y) = Y+ I
f = actuals 2(inc)

We see that the program that resulted above is first-order: all the functions have zero-
order arguments. The only exception is the definition of f which is an equation between



272

function expressions. We can easily change this by introducing an auxiliary variable z:

result = (call(2,1)(apply))(10)
apply(x) = (x)
inc(y) = y+ 1
f(z) = (actuals 2(inc))(z)

It is necessary to pass z inside the actuals before performing the next stage of the trans-
formation. However, the actuals operator alters (shortens) the tags. In order for z to be
evaluated in the outer tag, it has to be appropriately advanced before entering the scope
of actuals. This is done as follows:

result = (call( 2,1)(apply))(10)
apply(x) = f(x)
inc(y) = y +1
f(z) = actuals 2(inc(call(2,1)(z)))

This completes the first stage of the transformation. Now, we have a first-order intensional
program, and we can apply the technique for the first-order case, which gives the final
program:

result = call(l,j)(call(2,l)(apply))
apply = call(l,l)(f)
inc = y+l
f = actuals 2(call(l,l)(inc))
z = actuals1 (x)
y = actualsi(call(2,ij(z))
x = actualsl(10)

The (informal) algorithm for the higher-order case consists of repeating the following steps
until the program becomes zero-order.

1. Let f be a function of the current highest order d. Number the textual occurrences
of calls to f starting at 1.

2. Remove from the ith call to f all the actual parameters of order (d - 1). Prefix the
call to f with call(d,i).

3. Remove from the definition of f the formal parameters of order (d - 1).

4. For every formal parameter x of f that was eliminated, introduce an actualSd defi-
nition, using the same procedure as in the first-order case.

5. Introduce new variables according to the type of x. Add the variables to both sides
of the definition of x, appropriately advancing them before they enter the scope of
actuals d.

In the execution model for a program of order N, tags are N-tuples of lists of natural
numbers, and each list corresponds to a different order of the initial program (or equiv-
alently, a different stage in the transformation). We will use the notation < t1 , ... , tN >
to denote a tag. The operators call and actuals can now be thought of as operations on
these more complicated tags. The semantics of call(d,) can be described as follows: given
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a tag, d is used in order to select the corresponding list from the tag. The list is then
prefixed with i and returned to the tag.

On the othet hand, actualsd takes from the tag the list corresponding to d, uses its
head i to select the ith argument of actuals, and returns the tail of the list to the tag.
The new semantic equations are:

(call(d,i)(A)) <t,...td,-,..tN> = A<tl,.,itl.., >

(actualsd(AI__ .. An)) <t. t > = (A.d(!))<t.. i)....,,tN>

For n-ary operation symbols c, the semantic equation is the same as in the first-order
case. The evaluation of a program starts with an N-tuple of empty lists, one for each
order. Execution proceeds as in the first-order case, the only difference being that the
appropriate list within the tuple is accessed every time.

4 Extensional and Intensional Languages

In this section, the syntax of the source and target languages are introduced. Based on
this material, a formal definition of the transformation algorithm is presented in the next
section.

4.1 The Source Functional Language

The source language adopted is a simple functional language, of recursive equations,
whose syntax satisfies the two requirements introduced in the previous section. The
source language will also be referred as the extensional language, to distinguish it form
the target intensional one. We proceed by defining the set of allowable types of the
language and then presenting its formal syntax.

Definition 4.1 The set Typ of extensional types is ranged over by r and is recursively
defined as follows:

"* The base type t is a member of Typ.

"* If rl,..., 7. are members of Typ, then (r7 x ... x rn) -4 t is a member of Typ.

For simplicity, when n = 0, we assume that (r1 x .. .x rn) -4 t is the same as t. The
meaning of the base type t is a given domain V, which will be called the extensional
domain.
Definition 4.2 The syntax of the extensional functional language Fun is described by

the following rules:

"* Var' are given sets of variable symbols of type r and are ranged over by fT.

"* Con' are given sets of operation symbols of type r, ranged over by c'.

"* Exp is a set of expressions ranged over by E and given by:

E ::= I (c(x .... )-'(E, E..... .)). I (f(T X... .X ×)ý-(E0 ,..,E-

The set of expressions of type r is denoted by Exp'.
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"* Def is a set of definitions ranged over by D and given by:

D ::= •d•'l ',- (rix'"xrnl) tt rl .. .Ix"'n• ) -- E')

"* Prog is a set of progruntms ranged over by P. A program is a set of definitions,
exactly one of which defines the nullary variable result. The variables appearing in
the program (including formal parameters), are distinct from each other. Function
definitions do not contain global nullary variable symbols in their body.

The order of a function is the order of its type. Formally:

Definition 4.3 The order of a type is recursively defined as follows:

order(i) = 0
ordu,((T, x ... x r.) --+ 1) = 1 + max({order(rk) I k = 1,... n})

4.2 The Target Intensional Language
Intensional Logic [10, 5] is a mathematical formal system which allows expressions whose
value depends on hidden contexts. From the informal exposition given in sections 2 and
:3, it is clear that the programs that result from the transformation, ran be evaluated with
respect to a context. The zero-order variables that appear 'n the final program, are not
ordinary variables that have a fixed data value. In fact, they can intuitively be thought
of as tree-like structures, that have individual data values at their nodes. Such variables
are also called intensio,,s [5].

Another way one can think about intensions, is to consider them as functions from
contexts to data values, i.e. as members of (W -- V), where W is a set of contexts (also
called possible torlds) and V is a data domain. Given an intension and a context, the
value of the intension at this context can be computed. Moreover, operations like +, *,
if - then - else and so on, are now operations that take as arguments intensions. For
example, if .r and y are intensions, then (x + y) can be thought of as a new intension,
whose value at every context is the sum of the values of the intensions x and y at this same
context. In other words, operations on intensions are defined in a pointwise way using
the corresponding (extensional) operations on the data domain V. The above discussion
is formalized by the following definitions:

Definition 4.4 The set ITyp of intensional types is ranged over by T and is recursively
defined as follows:

* The type i" is a member of ITyp.

e If rl,..., T are members of ITyp then (rT x ... x Tn) --+ t* is a member of ITyp.

Let W be a set of possible worlds (or contexts, or tags) and let V be an extensional domain.
Then, the meaning of the base type t" is the domain I = (W -- V), called the intensional
domain. Members of I are called intensions. The set W plays the most crucial role in the
specification of an intensional language. In our case, W = (N -* List(N)), i.e., W is the
set of functions from natural numbers to lists of natural numbers. Given an extensional
language Fun over the data domain V, an intensional language In(Fun) can be created
as follows:
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Definition 4.5 The syntax of the intensional language In(Fun) is described by the fol-

lowing rules:

"* TVar' are given sets of intensional variable symbols ranged over by fr.

"* ICon' is a given set of continuous intensional operation symbols, ranged over by
cr. Members of ICony are also called pointwise operations because their meaning
is defined in a pointwise way in terms of their extensional counterparts.

"* INp is a set of non-pointwise operation symbols given by:

{call(d,i) I d, i E N} U {actualsd I d E N}

"• IExp is a set of intensional expressions ranged over by E and given by:

E ::= f (c(...)-(E,. . E, E'))' I 0 . ,

I (call(d,i)(Er))', I actualSd({iI: Ei,..... i,,: Eir})', d,i,ii,.. . EN

"* IDef is a set of intensional definitions ranged over by D and given by:

D ::= (f(Ti/..x'-)-(4',... ,x•-) - E")

"* IProg is a set of intensional programs ranged over by P. The same assumptions
are adopted as in the case of extensional programs.

Notice that the actuals operator is more general than the one described in section 3. The
new semantic equation is:

a ctu a lS d ({ il : A i,,. .. i n : A j. } )( (tl ,12 i . . ..) = A hd(t ,)(( t l, t2 , . . . . , tl(t d ), . . .) )

The order of intensional functions can be defined in the same way as in the extensional
case.

5 A Formal Definition of the Transformation
In this section, we describe the transformation of a d-order program into a (d - 1)-order

one. The following conventions are adopted:

Definition 5.1 Let P be a program and let f be a function symbol defined in P. Then:

"* The notation 7 is used to denote an expression of the form (call(d,,i,) ... call(d,.,i,)(f)),
k > 0. For k = 0, 7 denotes the identifier f itself.

"* Given d E N, pos(f, d) is the list of positions of the formal parameters of f that
have order less than (d - 1). For example, pos(apply,2 ) = [2], because the second
argument of the apply function of section 3, has ordei less than 1.

* The set of (d - 1 )-order formal parameters of f, is represented by high(f, d).

* The set of subexpressions appearing in definitions of the program P is denoted by
Sub(P), and the set of function identifiers defined in P is denoted by fune(P).

p
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Moreover, we assume the existence of a function r-1 that assigns unique natural number
identities to expressions, i.e., if El # E2 then rE1] # [E 2]. The elimination of the (d- 1)-
order arguments from function calls, is accomplished with the Md function, defined below:

E=7
Md(E) =7

E = c(E,,..... E.)

Md(E) = c(Md(E)),.. , d(E))

E = (-f)(Ej,...,E,.), order(r) = d, pos(f,d) = [ii ... ik

.Add(E) = (call(d,FE1)(7))(Md(Ei,), .. .. .M d(Eij)

E =(-T)(Ej,..... E.), order(r) 54 d

Md(E) = (7)(Md(E,),..., , d(S.))

E = actua1sd,({i1 : Ei ,.... ,iý : Ei•})
Add(E) = aetualsd,( {i, : .Ad(Ei,,)- .... i,: Ad(E.)}))

The first and second rules above are self-explanatory. The third rule applies in the case
where a function call is encountered, and the corresponding function is d-order. In this
case, the arguments that cause the function to be d-order (i.e., the (d- 1)-order ones), are
removed, and the call is prefixed by the appropriate intensional operator. Notice, that if
two function calls in the program are the same, then their translations according to Md

are identical. The fourth rule applies in the case where the function under consideration
is not d-order. In this case, the translation proceeds with the actual parameters of the
function call. The final rule concerns the actuals operator, and is also straightforward.

The elimination of the (d - 1)-order formal parameters from the function definitions,
is accomplished by the function Rd defined below:

D = (f(xl,.. .,x,) - E), pos(f,d) = [il,.. .,iik]

Rd(D) = (f(x, ...... xi.) M- Md(E))

For every formal parameter that has been eliminated, a new definition is added to the
program. This is achieved using the function Af:

Af(P) = U {x actualsd({([F1 : Md(Ek))I F (7)(Ej,...., E,) E Sub(P)})}
XkEhith(fd)

The overall translation of a d-order program into a (d - 1)-order one, is performed by the
function Td:

Ed(P) = ( U Af(P)) U ( U {Rd(D)})
fEfunc(P) DEP

The translation described above, introduces certain actuals definitions, whose result type
is not first order. Let

f actualsd({il : Ej ...... i, : E})'
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be one of them, and suppose that r = r, x ... x r. --+ t*. We introduce n new variables
z'•,..., z, and equivalently rewrite the above definition as:

fAZI ... zn) --'actualsd({il :Ei ...... in : Ei.} )(zl .... -,zn)

It can be shown [11] that the above definition is equivalent to the following one in which
the parameters have entered the scope of actuals:

fAzI . .. zn) -* actualsd({ il Ei, (call(d,i)(Oz),., call (d,i,)(zn)),... -,
in :Ein(calt(d,in)(zl) .... ,call(d,in)(zn)) })

In the program that results following this approach, all the definitions have first-order
result types. The transformation algorithm can therefore be applied repeatedly, until a
zero-order program is obtained.

6 Discussion and Conclusions

An algorithm for transforming higher-order functional programs into zero-order inten-
sional ones has been presented. The resulting code can be evaluated relative to a context,
giving in this way a method of implementing a class of higher-order functions in a purely
dataflow manner.

Two preliminary implementations have been undertaken by the authors. In [12], a
hashing-based approach is adopted. More specifically, identifiers together with their con-
text and value, are saved in a Value-Store. If the identifier is encountered again under
the same context during execution, the Value-Store is looked-up using a hashing function,
and the corresponding value is returned. The measurements reported in [12] indicate that
the technique can compete with modern graph-reduction [8] implementation techniques
for functional languages. However, hashing is reported as a factor that can cause a severe
bottleneck to the implementation.

In [13], a technique is proposed in which contexts are appropriately incorporated in the
headers of activation records. A similar approach is reported in [4]. The main advantage
of an activation-record based technique, is that hashing is avoided, and a significant gain
in execution time is obtained. The results presented in [13] indicate that the tag-based
code outperforms many well-known reduction-based systems.

Future work includes investigating optimizations such as strictness analysis as well as
intensional code transformations. Also, we are currently considering the extension of the
technique for functions with higher-order result types.
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al Language, Valid, on Conventional Multi-Processors
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Abstract: In this paper, we present a dataflow-based lenient implementation of a func-
tional language, Valid, on conventional multi-processors. A data-flow execution scheme
offers a good basis to execute in a highly concurrent way a large number of fine grain
function instances, created during the execution of a functional program. The lenient
execution and split-phase operation will overlap the idle time caused by remote memory
access and remote calls. However, it is necessary to reduce the overhead to handle fine-
grain parallelism on conventional multi-processors with no special hardware for fine-grain
data/message-flow processing. We discuss compilation issues of dataflow-based imple-
mentation and runtime systems to support fine-grain parallel execution on two different
types of conventional multi-processor: a shared-memory multi-processor, Sequent Sym-
metry S2000, and a distributed-memory multi-processor, Fujitsu AP1000. We also show
the preliminary evaluation of our implementation.

Keyword Codes: D.1.1; D.1.3; D.3.4
Keywords: Functional Programming; Concurrent Programming; Programming Language
Processor

1 Introduction

Despite the development of massively parallel compliter architectures in recent years,
writing programs for such machines is still difficult, because most programming languages
still assume a sequential computation scheme. Explicit descriptions of procedural-based
parallel execution, and mapping to a particular architecture require a high degree of
skill. With implicit parallel programming languages, which promote the productivity of
software for parallel computer systems, compilers and runtime systems can easily exploit
parallelism without explicit descriptions of parallel execution.

Functional programming languages have various attractive features, due to their pure
functional semantics, for writing short and clear programs, providing the ability to ab-
stract architectural peculiarity and promoting programming productivity. It is easy for
both the programmer and the implementation to reason about functional programs both
formally and informally. The merits are more explicit in writing programs for massively
parallel processing, since a functional program is constructed as an ensemble of functions
and their instances can be executed as concurrent processes without interfering with each
other.

In this paper, we present a dataflow-based lenient implementation of a functional
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language, Valid, on conventional multi-processors. A data-flow based execution scheme
offers a good basis to execute in a highly concurrent way a number of fine grain function
instances, dynamically created during the execution of a functional program. Lenient
execution and split-phase operation will overlap the idle time caused by remote memory
access and remote calls. However, it is necessary to reduce the overhead to handle fine-
grain parallelism on conventional multi-processors with no special hardware for fine-grain
data/message-flow processing.

In section2, we discuss compilation issues for our dataflow-based implementation, and
present a dataflow-based intermediate code and an overview of our multi-thread' execu-
tion. Our implementation targets are two different types of conventional multi-processor.
In section 3, implementation issues and a preliminary evaluation for a shared-memory
multi-processor, Sequent Symmetry S2000, and in section 4, those for a distributed-
memory multi-processor, Fujitsu AP1000, are presented.

2 Compilation

The compiler consists of a machine independent phase and a machine dependent phase.
The machine independent phase generates a dataflow-based intermediate code. Then the
machine dependent phase optimizes the intermediate code for each target machine.

2.1 Intermediate Code

The intermediate code consists of Datarol[2] graph code and SST(Source level Struc-
ture Tree). Datarol reflects dataflows inherent in a source program. It is designed to
remove redundant dataflows and make code scheduling easy by introducing a concept
of by-reference data access. The synchronized memory access employs an I-structure
mechanism[3]. Datarol instructions are similar to conventional three-address instruc-
tions, except that each instruction specifies its succeeding instructions explicitly. SST
represents the source program structure and helps to determine the optimal grain size
and code scheduling which can utilize the locality.

Table 1 shows the extracts from
Datarol instruction set. Details Table 1: Extracts from Datarol instructions
of SST and synchronized memory
access operations are omitted be- instruction semantics
cause of space limitation. A general
Datarol instruction is expressed as oai rh rm2 rD -> D conventional 3-addressarithmetic and logical

1: [*] op rs, rS2 rD -> D instructions
sw rsi -> Dt, Df branch

where I is a label of this instruction call rs, rD -> D activate new instance
and D, or continuation point, is a set link rsl rS2 81ot link rS2 Value to rs,
of labels of instructions which should runk rs, rD S[ot->D link rD address to rsl
be executed successively. This in-strexecuctio m ueansive. t p Teis on- receive rsl slot-> D receive parameter, rs,struction m eans that op operates on r t r s S e u n r 2 v l et S
two operands rsi and rs2, and stores return rs, rs2 return rs2 value to rsI
the result in rD , which generally de- rins release current instance
notes a register name. The optional
tag `' (0] means that what is enclosed is optional.) indicates that a partner check is

'A thread is an instruction sequence to be executed exclusively.

I .. . ...
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required for the instruction. The branch instruction SW transfers a control to continua-
tion points Di or D! according to its boolean operand. Function application instructions
are executed as split-phase transactions. A call instruction activates an instance of a
function specified by rsl, and sets its instance name to rD . A link instruction sends the
value of rS2 as the slot-th parameter to the instance specified by rsi. An rlink instruc-
tion sends the current instance name and rD address as a continuation point. A receive
instruction receives the slot-th value, stores it in rsj, and triggers D. A return instruc-
tion returns the value of rs 2 to the continuation point rs, specified by the corresponding
rlink in the parent instance. An rins instruction releases the instance.

2.2 Computation Model for Conventional Multi-Processors

Instance level parallelism is ex-
ploited by using a data structure,
called frame, which is allocated to each Frame Program Code
function instance. Intra-instance par- variable slots Code 1I
allelism is exploited as multi-thread I
parallel processing. Fig.1 shows the Code2
overview of a frame. The variable CSP
slots area is used to manipulate local ready thread .....
data. The thread stack is provided in ready ed ....... ..........e
order to dynamically schedule intra- .
instance fine-grain threads. When a ...... ....... "'i ....... Code m
thread becomes ready to run, or a . ....... Code..

ready thread, the entry address of the E
thread is pushed into the thread stack.
A processor executes instructions of a Figure 1: Overview of a frame
thread in a serial order until it reaches
its termination point. If the execution of the current thread terminates, a ready thread
is popped from the top of the thread stack for the next execution. A processor get a
ready thread from a thread stack and execute the thread repeatedly. If ready threads are
exhausted, the processor switches to another frame.

In principle, the compiler partitions a Datarol graph at split-phase operation points,
traces subgraphs along arcs in a depth-first way and rearranges nodes in the traced order,
in order to generate a threaded code for conventional multi-processors[10]. However, the
choices of split-phase operation and code scheduling strategy depend on the run-time
costs of parallel processing of the target machine.

3 Implementation on a Shared Memory Machine

3.1 Implementation

Fig.2 shows the outline of the multi-task monitor implemented on Sequent Symmetry
DYNIX. Frames are realized as data structures in a shared memory. Arguments and local
variables are stored in a work area. To reduce the overhead of allocation and deallocation
of a frame, each processor has its own free-list of frames. A task pool is a chain of runnable
frames. A frame is put into a task pool when it becomes ready to run. Processors get a
runnable frame from a task pool in a mutually exclusive way, and execute the frame. The
number of task pools is set to be greater than the number of processors in order to reduce
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the overhead caused by the access race to the task pools. Processors execute intra-instance
threads within their local environment, so that the cache mechanism can work effectively,
and bus traffic, a main cause of bottlenecks in shared memory multi-processors, can be
reduced.

Task Pool *Task Pool Task Pool.. ..... ... ..

push POP Frame

-•,mo, stl'- ;'• / . ..... . ....... .r...... . ....... ,
Frame free st Frame free list Frame free list

.... .... . . . ... ..
J]F~rame Frame ~!...JFrame

fork operation getting Frame releasing Frame

Figure 2: Multi-task monitor for a shared memory machine

An instance frame may have one of three states: running, ready or suspended state.
A running instance is an executing instance. A ready instance is in a stack pool with one
or more executable threads in its thread stack. A suspended instance has temporarily no
executable thread, but has not completed its computation. At the end of the execution of
a thread in a running instance, the synchronizing variables of the continuation threads are
decremented. When the variable becomes 0, if the target instance is in suspended state,
the instance is pushed into a task pool; if it is in running or ready state, the target thread
becomes ready and is pushed into the thread stack of the instance. In Sequent Symmetry,
checking synchronizing variables can be done by one operation without context switching.
Thus its overhead is not so serious compared with the AP1000, where this checking of
synchronizing variables may cause message passing and context switching.

At the end of a thread execution, the processor also tries to execute another thread in
the current frame. If there is no other executable thread in the frame, a context switching
will occur. When the current instance is completed, the processor puts back the current
frame in its own frame free-list to reuse it. In a context switch, the processor abandons
the current frame and tries to start another executable frame.

3.2 Performance

We have evaluated the performance on Sequent Symmetry S2000, using I to 16 pro-
cessors. Table 2 shows the elapsed time in seconds for parallel Valid and sequential C
programs using the same algorithm, with the relative speedup ratios and the overhead
caused by parallel control for Valid programs. The relative speedup ratios are evaluated
as: (time of C program) + (time of Valid program). The overhead column shows the pro-
portion of system time to total time based on the results from the DYNIX profiler. System
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Table 2: Time comparisons of Valid and C; speedups and overheads of Valid.
Program Time (sec.) Speedup OverheadValid I C

16Cpus lcpu

sum(l, 106) 0.0375 0.241 6.44 7.69%

matrix(256) 9.07 38.4 4.23 23.4%
nqueen(10) 4.21 25.3 6.01 15.5%
qsort(104) { 3.21 12.1 3.77 65.8%

time includes the time spent getting, initializing and releasing frames, and synchronizing
operations. Figure 3 shows the relative speedups of Valid programs. In the graph, the
horizontal axis shows the number of processors used, the vertical axis the speedup, and
the linear proportion line the ideal speedup.

The program 'sum(l, h)' calculates the
summation from I to h integers. We speedup
implement this program with a paral- 1
lel expression and a reduction operation.
The program is partitioned into relatively I4
large portions and distributed to proces-
sors equally, so process creation overhead 12
is less critical.

The program 'matrix(n)' computes the 10 I
product of two n x n matrices. Although d
the speedup is close to linear, the speed is 8
about one-third compared with the ideal
one. This is probably caused by the im- 6 matrix-
plementation of an array structure. An ar- -S
ray in C is a one-dimensional or multidi- 4 -• qso; f--
mensional collection of homogeneous val- 64 -iqueen
ues. On the other hand, an array in Valid is 2 .

one-dimensional and may have a collection
of heterogeneous values. Therefore, the im- 0 5 10 1s
plementation of an array in Valid must be # of processors
more complicated than its implementation
in C. It is possible to increase the speed Figure 3: Speedup graphs for Valid programs
of the Valid programs by introducing the on Sequent Symmetry S2000
same array specification into Valid.

The program 'nqueen(n)' searches all solutions of the n-Queen puzzle. The C program
uses library functions to manipulate lists from Valid.

The program 'qsort(n)' rearranges the elements of a list with n integers with a quick
sort algorithm. The C program uses library functions from Valid to manipulate lists. In
Figure 3, the speedup curve of Valid saturates at about 5.5 after 10 processors.

3.3 Experiment to reduce overhead

To solve the problem of process creation cost in parallel processing, the compiler
estimates the cost of each function, and generates a code in which light-weight function
applications are not forked, but inline expanded. However, the exact cost of recursive
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functions cannot be estimated at compile time. While functional programming languages
have the advantage that programmers can write programs without paying attention to
the parallelism of the program, they have the disadvantage that program optimization is
difficult. For example, even if the most effective strategy, that is, determining whether to
evaluate in parallel or sequentially, and the most effective mapping of functions and data
to processors in multi-computers are obvious to programmers, it is difficult to explicitly
express them in programs. As a paradigm to solve the above problem without losing the
advantage of functional programming languages, parafunctional programming, such as
ParAlfl from Yale university, has been offered [7]. This is a method to extend a functional
programming language by introducing meta-linguistic devices such as annotations in the
language. We have attempted to extend Valid to optimize the strategy of processing
functions, and evaluated its performance.

An extension of function application specification in Valid allows the programmer to
express a strategy for deciding between sequential or parallel execution. As a simple
example, we present the program 'fib8(n)', an extended version of 'fibo(n)', in which
parallel forking is controlled with the argument n.

function fib8(n: integer)return(integer)
if n<2 then 1
else fib8(n-1)$[n>=8] + fib8(n-2)$[False];

In the above program, if n > 8, the function application fib8(n-1) is executed by a par-
allel fork operation, otherwise sequentially by a local call operation. Table 3 shows the
performance improvement on the fib8(30) program.

If the target machine is a multi-computer, the
parallel fork control method mentioned above can Table 3: Effect of annotation to con-
be expanded easily for mappings of functions and ta
data to processors. By allowing an integer expres- trol parallel fork operation(16cpus).
sion to be an expression in $[ 1, and by generating Program Time (sec.) Overhead
a code which regards the value of the expression in fibo(30) 7.61 73.5%
$1 ] as a processor ID and maps the function appli- fib8(30) 2.84 70.6%
cation to a processor, the mechanism of mapped
expression in ParAlfl can be implemented.

4 Implementation on a Distributed Memory Ma-
chine

4.1 Implementation

On a distributed-memory machine, AP1000, an instance frame is created by using
message passing. The message consists of data, PE ID, frame ID and thread ID. Messages
are stored in the system message buffer of the target node. When a PE finds that the
current frame has no executable thread, the processor gets a message from its message
buffer and switches its context according to the message contents. Message handlers are
code fragments generated and inserted in threads by the compiler to handle messages.

Fig.4 illustrates an example of message passing between two frames on different PE
nodes. a0, ...,a3 and bO ...,b3 represent thread labels. A format of M.H.xx in the threads
represents a message handler code for a thread xx. An arrow from a thread to another
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thread represents a message passing, and the contents of the message are shown above
the arrow.

When PE A executes an operation for instance creation(corresponding to a Datarol
call operation) in the thread ao, one PE is selected to activate the new instance(In Fig.4,
PE B is selected). An initializing thread, bO, is activated at the beginning of an instance
creation. This initializing thread is one of the runtime system threads which require no
instance frame. The initializing thread performs mkFrame to get a frame area, executes a
message handler, and initializes a synchronizing counter to control intra-instance thread
scheduling(see set(b3,2)). The PE ID and the address of the frame prepared in this
execution are packed into a message and sent back to the caller instance. This message
tries to activate the threads al.

Two fork operations(corresponding to
Datarol links) in the thread al will acti-

PE A PE B vate the threads bi and b2. At the heads

w_^rw.P --.--- ------ of the threads bl and b2, the message han-

0_•fork -b0•rnOW~ dlers extract the data from the message
S I M.AWb and store the data in the slots of the frame.

M..set(3,2 Concurrently, al may proceed its computa-

X M eXPI tFb~ for tion and activate some thread successively.
fork ./ i The thread b3 should be activated af-
y =fip2 bi M. I ter the termination of the threads bl andSlum b3,3 b2. Synchronization among these threads

&,2 b2 M.H bl, b2 and b3, is performed by using a syn-
chronizing counter. The value of the syn-
chronizing counter for the thread b3 is re-alized as a local variable with the initial 2,
since the thread b3 should be activated af-

4-ftor ter the termination of the two threads, bl
" vexp4 and b2. In the threads bl and b2, jump
-fork T,S instructions decrement the number of
end the synchronizing counter and test whether

the value of the synchronizing counter is 0
Figure 4: Overview of inter-frame message or not. If the value of the synchronizing
passing counter is 0, the thread T is pushed into

the thread stack.
After the termination of each thread, PE tries to pop a thread from the thread stack

of the current frame to executes it. If the thread stack is empty, PE switches to another
frame. The instance activated in the PE B, will terminate after the thread b3. At the end
of the execution of the whole instance, end releases the allocated instance frame.

4.2 Performance

We report the performance of Valid on the AP1000 using 1 to 64 processors. Table
4 shows the elapsed time in seconds for the Valid and C programs, the relative speedups
of Valid programs compared with C programs and the proportion of system library time
to the total time. The C programs are written using the same algorithms as the Valid
programs.

The library time includes the time spent for message passing operations to send and
receive message packets. Figure 5 shows the speedup of Valid programs relative to the
number of processors for each benchmark program. In the graph, the horizontal axis shows
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Table 4: Time comparisons of Valid and C; speedups and overheads of Valid.
Program Time (sec.) Speedup Task Library

________ 64c us Ic u11

sum(l, 101) 0.0385 1.47 38.1 57.1% 42.6%
matrix(512) 10.2 558 54.8 68.7% 31.3%
nqueen(10) 1.57 55.6 35.5] 62.9% 37.1%

the number of processors used, the vertical axis the speedup, and the linear proportion
line the ideal speedup.

speedup speedup
Opt3 uses non-block'activation / 7

/ __if possible in add ition to 0 t2.6 60 Opt2 makes a careful choise of local orremote activation, in addition to Opt1.
z .. Opt1 reduces'the fr aency50 - - - - ... mtix.. 50 of lenient execution./ - l

Ideal 
Ideal7 Op

0 10 20 30 40 50 60 0 10 20 30 40 50 60
# of processors # of processors

Figure 5: Speedup graphs for Valid pro- Figure 6: Speedup improvement('nql-,n').
grams on AP1000

As the AP1000 does not have special hardware, a sophisticated compilation technique
is necessary for the lenient execution of a fine grain parallel language such as Valid. Our
naive implementation showed that communication overheads are critical. We examined
the cost of our runtime system, focusing on the cost-hierarchy compilation, especially
trying to reduce the frequency of communication and to exploit locality. Fig.6 shows
an improvement in the speed-up ratio for the 'nqueen' program. We conclude that a
sophisticated exploitation of parallelism is more effective than a naive one.

5 Related Work

Several implementations of functional programming languages on parallel machines
have been proposed.
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SISAL is also implemented on Sequent SYlmmetry S200016]. We report the comparison
results of SISAL and Valid with the same programs in section 3.2 on Sequent Symmetry
S2000 using 16 processors. The SISAL programs are compiled with the optimizing SISAL
compiler, OSC version 12.9. Table 5 shows the elapsed time in seconds for for SISAL and
Valid programs.

In SISAL, the program 'sum(l, h)'
is implemented with a product-form Table 5: Time comparisons of Valid and SISAL.
loop and a reduction operation. We Program 11 Time (sec.)
implement this program with a par- (i)ValidI (ii)SISAi
allel expression and a reduction oper- [ _16pu ) (1 (_pus)
ation. The performance of the Valid (16cpus (16cpus)

program is comparable to the perfor- sum(l, 106) 0.0241 0.0200 0.830

mance of the SISAL program. The matrix( 256) 9.07 3.11 0.343
performance difference of SISAL and nqueen(10) [ 4.21 65.2 15.3
Valid 'matrix(n)' programs is caused qsort(104) 3.21 8.09 2.52
by the implementation of an array
structure as mentioned in section 3.2.
The SISAL 'nqueen(n)' program is implemented with streams and is not l)arallelized. In
the SISAL program, the size of a stream, which contains the solutions, is determined after
the search of all solutions is completed, so that it is not invariant. OSC does not 'o xur-
rentize loop forms which produce variant size streams (and arrays). On the other sand.
the Valid program is parallelized. The SISAL 'qsort(n)' is implemented with arra s. and
is not parallelized, because of the concurrentization strategy of OSC mentioned above.

The (v, G)-machine[4] is a super-combinator graph-reduction machiae. Programs in
Lazy ML are translated into a set of definitions of super combinators and the definitions
are then compiled in the object code of the (v, G)-machine. In the (v, G)-machine, all the
data are in the shared memory as fragments of the program, which form a program graph
dynamically, since the processing order is determined dynamically at runtime. Frequent
access to the shared memory causes bus saturation. Our implementation may have the(
same problem. However, our implementation on a shared memory can reduce shared
memory access by using as many stacks and registers as possible, since access to frames in
the shared memory is only to arguments and local variables of a function. Although our
current implementation does not support lazy evaluation and higher-order functions, from
the viewpoint of efficiency, our implementation has an advantage over the (v, G)-,nachine.

Our implementation is similar to Threaded Abstract Machine(TAM)[5]. TAM is also
based on a thread-level dataflow model, and such dataflow graphs are constructed from Id
programs. The execution model of TAM is an extension of a hybrid dataflow model. Our
implementation also has its origin in an optimized dataflow, Datarol[2], and our interme-
diate DVMC can be mapped onto the Datarol-II architecture. However, a sophisticated
optimization technique is necessary to implement Valid on conventional multiprocessors.

6 Conclusion
As Valid is a functional programming language originally designed for a dataflow

architecture, it is easy to extract parallelism of various level. Implementation issues
based on the dataflow scheme for the Sequent Symmetry and the Fujitsu AP1000 were
discussed. A function instance is implemented as a concurrent process using a frame.
Intra-instance parallelism is realized as multi-threads scheduled in the frame.

Our implementation tries to exploit fine grain parallelism according to the parallel
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processing capacity of the target machine. However, the grain size of our multi-thread
implementation is still too fine for conventional processors. We find that source level
annotation to control the grain size, and a sophisticated scheduling method taking into
account the parallel processing cost peculiar to the target system, are effective in order
to reduce the overhead of fine grain parallel processing.
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Abstract: The Generalized Dataflow Model is introduced for OR- and pipeline AND-parallel execution of logic
programs. A higher level abstraction of the dataflow model called the Logicflow Model is applied to implement
Prolog on massively parallel distributed memory computers. The paper describes the main features of the two
models explaining their firing rules and transition functions respectively.

1 Introduction

There have been several attempts to implement Prolog or other logic programming languages on dataflow
computers [5), [6], [21, [3]. The main problem with these approaches was that they aimed at a very fine-grain
implementation scheme that required too much parallel overhead. Recently two projects aimed at again the
parallel implementation of Prolog based on the dataflow principles on either a coarser-grain platfrom [I] or on
fine-grain multi-threaded massively parallel computers [41. In our project called the LOGFLOW project [81 we
want to exploit coarse-grain parallelism based on the data driven semantics in order to implement Prolog on
massively parallel distributed memory multicomputers. The LOGFLOW-2 machine is a two-layer distributed
memory multicomputer specialized for execution of logic programs. It has two layers:

1. Sequential Prolog Processor (SPP) layer
2. Intelligent Logic network (ILN) Layer

A Prolog program is a collection of sequential modules which can be executed in parallel based on the OR-
parallel and AND-parallel principles. The first layer of LOGFLOW-2 (SPP) is a collection of sequential Prolog
processors. Each of them is a Warren Abstract Machine (WAM) to be used for efficiently executing sequential
Prolog modules. These WAM processors perform coarse-grain logic programming computations independently
of each other. It is the task of the second layer (IL1) to organize the work of these WAM processors into a
coherent parallel Prolog system. ILN provides an intelligent communication layer specialized for connecting and
organizing the work of the WAM processors according to the OR-parallel and AND-parallel principles.
Processors of the ILN layer work in a data driven way based on the Dataflow Search Graph (DSG) of logic
programs. The DSG is mapped into this processor layer and applying a dataflow execution scheme, nodes of the
DSG perform logic and control functions.

The main objectives and contributions of the paper are:
1. to define the Generalized Dataflow Model for parallel execution of pure logic programs (Section 2)
2. to introduce the Logicflow Model by structuring the dataflow subgraphs of the Generalized Dataflow

Model into higher level compound nodes and by generalizing the firing rules (Section 3).

* The current paper is part of the project titled "Highly Parallel Implementation of Prolog on Distributed
Memory Computers" supported by the National Scientific Research Foundation (Hungary) under the Grant
Number T4045.
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2 A Dataflow Execution Model for Pure Logic Programs

In the current paper we use the term reduced Prolog program (RPP), which means a Prolog program without
any built-in predicates. It can be shown that a reduced Prolog program can be translated into a dataflow graph
containing the following elementary nodes:

EUNIFY(1 .3), BACK-UNIFY(2.2). UMERGE(2.I), E UNIT(l .1),
AN-D-SAVE(I .2), AND RESTORE(2,2),
OR-SAVE(I ,4), OR-RE-STOREL(2,2), ORRESTORE R(2,2), OR-vIERGE(2,I)

Here the first value in the brackets represents the number of input arcs and the second value the number of
output arcs. The EUNIFY, BACK-UNIFY and U MERGE nodes are closely related and jointly represent the
head of a rule clause (see Fig. 1). The E.JJNIT node represents a unit clause. The ANDSAVE and
AND-RESTORE nodes together can be used to connect a goal to the body of a rule clause (see Fig. 2) and
finally the ORXX nodes together serve to connect two alternative clauses in a predicate (Fig. 3). Based on
these subgraphs any reduced Prolog program can be translated into a dataflow graph consisting of the elementary
nodes and subgraphs introduced above. Figure 4 shows a simple Prolog program and its dataflow graph clearly
indicating the applied subgraphs.

graph describinrg

Figue 1.Datflowgrah reres nta Eno rule clause p:.l,2 q

froE _ UNIFY 0A _AV2J ro ANSAEni toAC UNIFY

FAL gra phi describing tebdofA thL

FAL rp cribin ofIL gragh describing

SUB q

AND SAND

DSAVE * RESTOkE 0 SAVE RIESTCXAE
22 2 22

graph describing the called graph describing the called
procedure: of procedure: qn

Figure 2. Dataflow graph representation of the body in clause p:-ql,q2,..qn
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Figure 3. Dataflow graph representation of clause alternatives

input out ul f a(1,2).
-" . . . . . -. . . .- - a(3,4).
AV 1 a(X,Y):- b(X.Z), c(Z,Y),
AV "b(5.6).

c(6,7).

* a!R 0 L 0  R.

I IfORT :L R"I'0 A', AV. E. : AV OF,

-2 E 5 - - -! -

a(1,2) a(3,4) b(5,8) c(6,7)

Figure 4. Dataflow graph of a simple Prolog program

The dynamic behaviour of the graph is defined by tokens moving on the arcs and by the firing rules and
functions of the nodes. We want to define these features of the graph in such a way that the dynamic execution
scheme would result in an OR-parallel and pipeline AND-parallel pure logic programming execution
mechanism. We use the term pure logic programming instead of Prolog since the order of executing alternative
clauses (i.e. the search strategy) is fixed in Prolog, while in a pure logic programming system this order can be
freely selected. in an OR-parallel execution seheme we want to permit any order of execution to exploit as much
parallelism as possible. In order to fulfil this task we have generalized the pure dazaflow computational model in
several points. The new model is called the Generalized Dataflow Model (GDM). In the GDM a node is defined
by a 3-tuple:

R LR, A, AA

I - -- -- - -- -
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where 0 represents the firing rules of the node
A represents the set of logic functions of the node
A represents the set of arguments stored in the node

The main features of the GDM are as follows:
a. There can be nodes which are able to fire even if only a subset of their input arcs contain tokens.
b. There can be nodes which have different firing rules depending on the types of input tokens or on the

result of the function executed by the node.
c. There can be arcs for which the node puts back the consumed token after firing. These arcs are called

repeat-arcs and are denoted by a "" on figures.
d. Tokens have context field which is a 3-tuple containing the color, target and return of the token.
e. There can be nodes which generate a token stream on an output arc. All the tokens of a token stream have

the same context.
f. There can be nodes which are able to store constant values as arguments for their associated logic

function.

Five token types are introduced into the dataflow execution model to describe the activities of a pure logic
programming system. The role of these tokens are as follows:

I. request token representing a query: DO (context,environmentarguments)
2. reply token representing a successful resolution: SUCC (contextenvironment)
3. reply token representing a failed resolution: FAIL (context)
4. request/reply token representing variable

substitutions within the clause body: SUB(contextenvironment)

5. context token storing temporarily the context of CONT(context) or
a request DO token: CONT(contextenvironment)

The context field contains the color of the token the target node and arc of the token and a return field identifying
the node and arc where the reply token should be sent back. The environment field contains the permanent
variables (with their binding values) of the clause in which the current token is moving. The argument field
contains the arguments of goal represented by a DO token. The computation is based on the concept of token
streams. There are two kinds of token streams:

(a) In reply to a request DO token each node produces a SUCC token stream, which is a series of tokens
consisting of N consecutive SUCC tokens closed by one terminating FAIL token. The empty stream consists
of a single FAIL token.

(b) UNIFY and AND nodes produce SUB token streams, which consist of N consecutive SUB tokens ended by

one FAIL token. The empty stream consists of a single FAIL token.

With these generalizations the firing rules of the elementary nodes are given by the following notation:

(in p_tok,logicfunction) => out_tok

where "inpjtok" means the set of input arcs and input tokens taking part in the firing of the node. "logic
function" means a logic related function to be executed by the node during the firing. "out-tok" represents the
set of output tokens produced by the firing. The use of different kinds of brackets in the definition of firing rules
is summarized below:

[] used for token streams, i.e. for tokens to be created sequentially
{ used for tokens to be available or to be created at the same time
<> used for describing token contexts

Nodes are identified by their type and by an integer as their index number. Notice that a unique index would be
sufficient for this purpose, however for the sake of readability of the firing rules we introduced this redundancy
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into the notation. Accordingly, the closely related elementary nodes (see Fig. L.-3.) have the same index
number. Explanation of some further notations are given here:

i: represents the index of the sender node
k: represents the index of the current node
m or n: represent the index of the target node in a token generated by the current node
0: represents the most general unifier
EiOk: represents the caller environment with the binding values created by the current unification
EkOk: represents the current clause environment with the binding values created by the current unification

Based on these notations the definitions of the elementary nodes are given both formally and informally. A
detailed BNF description of the firing rules can be found in 191. Note that arcs are identified only by nuniners in
the figures, since the direction of an arc indicates if the are is input or output.

2.1 Representation of Rule Clause Heads

Defining the EUNIFY, BACK-UNIFY and UMERGE nodes we should understand that these nodes are
closely related, together they represent the head of a rule clause as shown in Fig. 1.

EUNIFY:
The task of E-UNIFY is to execute unification between the arguments of the input DO token and the
arguments of the represented clause head. Notice that the latter arguments are stored in the EUNIFY node as
constant parameters.

M DD FAIL
3 unify F unify

E NIFY 2it2E 2 UNI 2
2 '* E tISFSJ~-~ FAILED

11 FAIL
SUB

(a) (b)

Figure 5. Work of the EUNIFY node

a/In the case of successful unification a SUB token stream is generated on arc outl and a CONT token with the
same unique new color on arc out2. The SUB token environment field contains the environment (permanent
variables) of the rule clause with the binding values created during the unification. The target node of the stream
should be the arc inl of an AND-SAVE node. The context and the environment field (with the bindings created
during the unification) of the consumed DO token are saved into the CONT token which is forwarded to the
coupled BACKUNIFY node.
FRI:
(tokenhinl]=DO(Ci,Ei,Ai), unify(Ei,Ai,Ek,Ak)=<Ei0k,Ek~k>) =>

{ token[outl]:=ISUB(Ck,EkOk), FAIL(Ck)1,
token[out2]:=CONT(<Ck,(BACK_UNIFYIk],2),Ci>,EiOk))

where Ci = <ci,(EUNIFYIk],1),ri>
Ck = <ck,(ANDSAVEImI,1),_>

b/ Failed unification (function=unify, result=FAILED): If the unification is failed a FAIL token is created and
placed on arc out3. This token inherits the color and return field of the context of the DO token.
FR2:
(token(in II=DO(<ci,(EUNIFY[kh ),ri>,Ei,A i), unify(Ei.Ai,Ek,Ak)=FAILED) =>

token [out3]:=FA! L(<ci,(U_M ERGEIkI,I),ri>)
BACK-UNIFY:
a/When SUB and CONT tokens with the same color are available on the input arcs, BACKUNIFY consumes
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them and executes back-unification between the environment fields of the two consumed tokens. The result is
placed in a SUCC token on arc out1 which is connected to arc in2 of the coupled UMERGE node. The saved
color of the caller DO token (consumed by the coupled EUNIFY node) is restored in the SUCC token based on
the return field of the CONT token. After firing the node puts back the CONT token on arc in2 as shown in
Fig. 6.a.

SUCC FAIL

•2 BACK BACK BACK

C UIYUNIFY UNIFY 2UIFY

gI g VFAILSB L

(a) (b)
Figure 6. Work of the BACK-UNIFY node

FR3:
( {tokenlinlI=SUB(<ck,(BACKUNIFY|kl,l),_>,Ek),

tokenlin2l=CONT(<ck,(BACK_UNIFYI k1,2),Ci>,Eiek)[21),
backunify(EiOk,Ek)=Ei' ) =>

{tokenIout 1I1:=SUCC(<ci,(UMERGElkI,2),ri>,Ei),
token(out2l:=CONT(<ck,(BACKUNIFY[kI,2),Ci>,EiOk) }

where Ci = <ci,(EUNIFYtkI,l),ri>

b/ When a FAIL token arrives at arc inl both the FAIL and the CONT tokens having the same color are
consumed and a FAIL token is placed on the arc outI. The context of the FAIL token is composed in the same
way as the context of the SUCC token.
FR4:
({tokenfinl=FAIL(<ck,(BACK_UNIFYlkhl), _>),

tokenlin2l=CONT(<ck,(BACK_UNIFYIkI,2),Ci>,Eijk)), ) =>
token louti f: =FAI L(<ci,(U_M ERGEI k ],2),ri>)

where Ci = <ci,(EUNIFYjkI,I),ri>

U_MERGE:
No matter which token arrives at which input arc, UMERGE consumes the token and copies it on the output
arc. However, the context of the copied token is modified, the target field is inherited from the retum field of the
consumed token.
FR5, FR6, FR7:
(token[ in 1 =FAIL(<ci,(UMERGEjkI,1),ri>), ) => tokenloutll:=FAIL(<ci,ri,_>)
(token[in2l=FAIL(<ci,(U_MERGElk],2),ri>)>, ) => tokenloutll:=FAIL(<ci,ri,_>)
(tokenhin2I=SUCC(<ci,(U_MERGElkI,2),ri>,Ei'),_) => token outll:=SUCC(<c i,ri,_>,Ei')

2.2 Representation of Unit Clauses

E_UNIT:
The EUNIT node represents a unit clause. Its task is to execute unification between the input DO token's
arguments and the head arguments which are constant parameters of the unify function.

a/ Successful unification: In this case a SUCC token stream is generated on the output arc. The SUCC token's
environment field contains the environment of the DO token updated with the binding values created during the
unification. The color of the token stream is identical to the color of the DO token, while the target field of the
token stream is inherited from the return field of the DO token.
FR8:
(token[in I ]=DO(<ci,(EUNITIki,l),ri>,Ei,Ai),unify(Ei,Ai,Ek,Ak)=<Ei~k,EkOk>) =>

tokenfoutll:=[SUCC(<ci,ri,_>,Ei~k), FAIL(<ci,ri,_>))
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b/If the unification fails, a FAIL token is placed on the output arc. The target field of the FAIL token is
inherited from the return field of the DO token.
FR9:
(token[inl I=DO(<ci,(E_UNIT[ k,l),ri>,Ei,Ai), unify(Ei,Ai,Ek,Ak)=FA!LED) =>

tokenlout 11:-=FAIL(<ci,ri,_>)

2.3 Representation of Body Goals

The ANDSAVE and ANDRESTORE nodes are closely coupled. A pair of them is used together for preparing
the call of a rule body goal as shown in Figure 2. The task of a connected (ANDSAVE, ANDRESTORE)
pair is to receive an input SUB token stream and to produce an output SUB token stream. From each SUB
token of the input stream a DO token is generated and sent to the graph representing the procedure to be called
by the related body goal. The called graph can create a SUCC token stream for each DO token. The
ANDRESTORE node should collect these streams and merge them into a single output stream.

ANDSAVE:
a/In the case of an input SUB token the node creates a DO token on arc outl and a CONT token on arc out2.
The DO token contains in its argument field the arguments of the corresponding goal. The color of the DO and
CONT tokens is inherited from the SUB token.
FR10:
(tokenlinll=SUB(Ci,Ei), createarg(Ei,Ak)=Ak') =>

{token[out fl]:=DO(<ci,nodem,(ANDRESTOREl k],I )>,Ei,Ak'),
token[out2]: =CONT(<ci,(AND_RESTORE kI,2),_>) }

where Ci = <ci,(ANDSAVE[k],I),_>
nodem = (ORSAVE[mI,1) or (E_UNIFYImn,1)

b/If a FAIL token arrives, the node simply copies it to the arc out2.
FRII:
(tokenIin II=FAIL(<cI,(ANDSAVElkI,k),_>)[1Ih_) =>

tokenlout2l:=FAIL(<ci,(ANDRESTORE[k 1,2),_>)

ANDRESTORE:
a/Whenever a SUCC token arrives from the graph describing the called procedure a CONT token with the same
color should be available on arc in2. At this time the AND RESTORE node can fire. It creates a SUB token on
arc outl based on the context of td- consumed CONT token and the environment field of the consumed SUCC
token. The CON T token is placed back to arc[21 and therefore it will be available again on arc[21 when another
SUCC token belonging to the same reply stream arrives.
FR 12:

({token [in2]=CONT(<ci,(AN D_RESTOR E[k 1,2),_>),
token[inlI=SUCC(<ci,(ANDRESTORE~kl,l),_>,Ei) }, _) =>

{token[ out21: =CONT(<ci,(AND RESTORE[k 1,2),_>),
token[out l]:=SUB(<cinoden, >,El) I

where noden = (ANDSAVE[m],I) or (BACKUNIFYIiJ,l)

b/When the stream ending FAIL token arrives at arc in], both the FAIL token and the CONT token with the
same color are consumed and no token is generated. This is the way how an input SUCC stream is transfered
into SUB tokens without a stream ending FAIL token.
FR 13:
( {tokenIin2l=CONT(<eci,(AN D_R ESTOR E[k 1,2),_>),

token[in1I=FAIL(<ci,(ANDRESTORElk],I),_>) ), _) => {

c/ Merging of the input SUCC token streams with the same color is finished when all the CONT tokens
having the same color has been consumed from arc[2]. If there is a FAIL token here and no CONT token with
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the same color, the FAIL token is simply copied on arc ouil and in this way the output SUB tokens are
supplied with a stream ending FAIL token. Notice that the FAIL token on arc in2 must nol be consumed as
long as there is any CONT token with the same color on that arc.
FR 14:
(token[in2 ] =FA! L(<ci,(ANDRESTOREIk],2),_>), ) =>

tokenloutI l:=FAIL(<ci,noden,_>)
wher! noden = (AND SAVElmi,I) or (BACKUNIFY[ihl)

2.4 Connection of Alternative Clauses

The ORSAVE, OR_RESTORE and ORMERGE nodes are closely related too. They serve to connect
alternative clauses of a predicate, i.e. to realize choice points in the Prolog Search Tree as shown in Figure 3.
Due to the lack of space here we give only the firing rule of the ORSAVE node, the others are described in 191.

OR-SAVE:
Copies the input DO token onto arcs outl and out2 with a new color. The context of the DO token is saved
into two CONT tokens.
FR 15:
(tokenlin I ]=DO(Ci,Ei,Ai), _) =>

{ token[outl:=DO(Ckl,Ei,Ai), token(out2l:=DO(Ckr,Ei,Ai),
tokenlout31:=CONT(<ck,(OR RESTORE_L[ k 192),Ci>),
token[out4]:=CONT(<ck,(ORRESTORE_R1 k l,2),Ci>) I

where Ci = <ci,(ORSAVE[k],1),ri>
Ckl =<cknodeleft,(OR_RESTORE Lfk],l)>
Ckr = <ck,noderight,(ORRESTORE_R[k hl,)>
nodeleft is the first node of the first alternative clause
noderight is the first node of the second alternative clause

3 LOGICFLOW: A Higher Level Abstraction

Based on the node definitions given in Section 2 we can transform pure logic programs into dataflow graphs and
the dataflow execution model results in an OR-parallel and pipeline AND-parallel, all-solution Prolog system,
where possible solutions for a query are delivered by a SUCC token stream (see proof in [9]). However, there
are several motivations to increase the granularity of the nodes in the execution model:

1. The dataflow model is very fine-grain and consequently we can expect large overhead in an ,"ual
implementation.

2. The dataflow graph is very unstructured, it is difficult to see how Prolog programs are transformed into
the graph.

3. Even for small logic programs large dataflow graphs would be generated.
4. Our purpose is to implement Prolog on coarse-grain distributed memory multicomputers, where the

communication overhead is even higher than in a dataflow machine.

In order to increase the granularity of the execution model we introduce a higher level of abstraction where the
closely related elementary nodes are grouped together and for these groups new node types are introduced. These
new node types are as follows:

UNIFY: for executing unification on rule clause heads and entering binding results into clause bodies
AND: for connecting body goals
OR: for connecting alternative clauses of a predicate

The graphical notation of the new nodes and their relation to the elementary nodes can be seen in Fig. 7. The
new compound nodes are even farther from the original pure dataflow concept than the elementary nodes. In
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order to describe these nodes we should further generalize the concept of dataflow and additionally to properties
a/-f/ described in Section 2 we should inuoduce a new one:

g. Nodes can have inner state, which can be modified during the firing of the node.

The new model is called the Logicflow Model. Generally saying a node is defined by a 4-tuple in logicflow:
(0 A, A, Z

where 0b represents the set of transition functions of the node
A represents the set of logic functions of the node
A represents the set of arguments stored in the node
E represents the set of states of the node.

requestiin replyouty
request.in replyin

request out 

UIFYin 
Heqeply~in 

UNIFl pi

Figure 7.a Structure and graphical notation of UNIFY node

request.in reply.out

request in rept out

AND-SAVE F ESTORE
request out reply.in

request.out reply .in

Figure 7.b Structure and graphical notation of AND node

Srequest.nriely.out

dsn 
* 

elotrequest.in 

elou

T _ request.outnI 4r reply.in2

replyeini request.out2
request. out 1Pl

reply~ini request.out2 C

Figure 7.c Structure and graphical notation of OR node

Notice that the CONT tokens of the GDM become hidden tokens in the Logicflow Model, since these tokens
are invisible outside the nodes. In order to maintain these tokens we need a new representation form which is
called the inner state of nodes. The inner state represents the contents of the hidden CONT tokens. Since the
inner state of a node has influence on the firing rule of the node we have to generalize the firing rule of the
dataflow model. The generalized firing rule is called as the transition function. The description format of the
transition functions for the Logicflow Model is as follows:
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(statel. inp_tok, logic function) => (state2, out bok)

The transition functions of the compound nodes can easily be derived from the firing rules of the component
elementary nodes. As an examnple firing rules of the UNIFY node are given in this paper, detailed explanation
and the transition functions of other compound nodes can be found in 191.
TFI1:
(state=-, token I request.in l=DO(C i.Ei,A i), unify(Ei,A i,Ek,Ak)=FAI LED) =>

(state:=_, token[ reply.outl:=FAIL(<cc,ri,_>)
where Ci = .cci,(UN1FYlkI,request~in).ri>
TF2:
(state=, token( request.in JDO(Ci,Ei,Ai), unify(Ei.Ai,EkAk)=<EiOk,Ek~k>) =>
(state[lckj1: =cci,ri.Ei~k >, tokenlrequest.o~utl:=lSUB(Ck.Ekek), FAIL(CkOj
where Ci <= ,ccUNIVYjkI,reques1.in),ri>

Ck <ck,(AND~Inf,request.If),_>
TF3:
(state[lCkj1=<c,ri,EiGk>, token[ reply.injI=SUB(<Cck,(UNIFYI kI,req uest.in),->,Ek),
back_unify(Ei~k,Ek)=Ei' ) =>

(stateick I:=<cc,ri,EiOka.,tokenl reply.out j:=SUCC(<ciri,_>,Ei1 )>
TF4:
(state[ick 1=<ci,ri,E'iOk>, tokenlIreply.injI=FAI L(<Ck,(UN IFYI k jreply.mn),_>)._) =

(state:=_, token[lreply.out j:=FAIL(<ci,ri._>)

4 Summary and Conclusions

The introduced Generalized Dataflow Model constitutes a theorcuical basis for defining a parallel Prolog abstract
machine. Further generalisation leads to the Logicilow Model where compound nodes are defined as a network of
elementary nodes and hidden tokens inside the compound nodes are realized by inner state (or memory). In the
Logicflow Model compound nodes can fire even if only a single input arc contains a token. This property of the
model can advantageosly be exploited by avoiding the application of costly and slow matching stores in the
underlying parallel architecture. Based on the Logictiow Model the Distributed Data Driven Prolog Abstract
Machine (3DPAM) has been defined in 171.
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Abstract: This paper motivates anrd outlines a general-purpose, architecture inde-
pendent, parallel computational model, which captures the intuitions which underly the
design of the United Function. and Objects programming language.

The model has two aspects, which turn out to be a traditional dataflow model and
an actor-like model, with a very simple interface between the two. ('ertain aspects of the
model, particularly strictness, maximum parallelism, and lack of suspension are stressed.
The implications of introducing stateful objects are carcr 'ly spelled out.

The model has severa! purposes, although we largC', aescribe it as it would be used
for visualising the execution of programs.

Keyword Codes: ).3.3
Keywords: Language ('onstructs and Features

1 Introduction

We seek a comput-tional model for general-purpose parallelism. Such a model would
provide both a static, architecture-independent, representation for parallel programs. to
be used by compilers and a dynamic, architecture-independent, representation for such
programs. to be use(d by visualisation, debugging, and profiling tools, and cot,.1 form the
basis of a real high-performance parallel implementation, on suitable architectures.

This paper concentrates on the motivation for, and main ideas of, the proposed model.
Many details, in particular the graphical rep: sentation of the model, are omitted due to
lack of space, and the interested reader is encouraged to ftp [I].

1.1 Properties required of the model
While the above aims are clearly aggressive, we believe they are possible, despite the
numerous failed attempts which litter the history of the subject through the 80s. However
they impose stringent constraints on the form of the model.

I. It should be intuitively natural, so that people can use tools based on it.

2. It should allow the expression of parallelism at any level of granularity.

3. :t should allow expression of locality and modularity -n parallel computation. In
particular it should allow local synchronisation to be expressed naturally.
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4. It should be capable of efficient implementation, at least in principle, either directly
on suitable specialised architectures, or by transformation to code appropriate for
conventional machines.

5. It should have a clean mathematical description and be amenable, at least in prin-
ciple, to formal reasoning.

Although, for pragmatic reasons, we place a relatively low priority on formal reasoning,
we believe that the model described below should be amenable to such reasoning. The
stress on intuitiveness implies that the model cannot be totally language-independent; the
programmer must be able to relate what is going on to the source program. The design
of such a model therefore reflects a set of choices about what is the "right" sort of pro-
gramming language for general-purpose parallel computation. Our choices are embodied
in the United Functions and Objects programming language, whose main characteristics
are summarised below.

1.2 Models considered unsuitable

Many models can be eliminated if these principles are accepted. We would first propose
to eliminate any model based on communicating sequential threads(CST). This is clearly
a radical and controversial step, as most existing parallel computation is expressed in
terms of such threads. In our view, the most fundamental question in this whole field
is whether the best way to view parallel computation is in terms of such threads, or in
terms of some more radical, more "totally parallel" model.

We would argue against CST on a number of grounds, most of which stem from the
fact that a CST program contains discontinuities between the insides of threads, which
execute serially, and the communication between them, which is where the parallelism
is. The placings of these discontinuities is, in practice, often arbitrary, and changing
them may change the semantics of the program. Threads may be related to objects in a
concurrent OOP style, but this is at best a marriage of convenience: we see no compelling
reason why the unit of encapsulation should also be the boundary between serial and
parallel execution. Indeed, the whole notion of a "thread of control" "s an artificial one,
an artifact of the way serial computers work rather than a property which is readily
identifiable in real-world objects. Note that we are not ruling out active objects - ones
which do autonomuous computation rather than merely reacting to incoming messages
- but we are questioning the assumption that such autonomous computation should be
equated to a thread of control.

The best size for a thread is machine-specific and may vary widely; clearly this makes
it undesirable for the programmer to determine the thread boundaries explicitly. On the
other hand, if the compiler does it, there is a problem mapping the partitioned code back
into the form the programmer knows about. If thread sizes are statically determined,
poor performance results for irregular programs; on the other hand use of the techniques
required for such programs, such as dynamic granularity and lazy task creation[I1] makes
the dynamic behaviour very complex. For instance[31 shows how the behaviour of a very
simple program under such a model can vary dramatically with subtle changes in the
exact details of how threads are spawned.

Our aim, then, is to find the best alternative to CST, although on conventional ma-
chines, we may well implement out model using CST techniques.

Graph reduction, and graph rewriting techniques in general suffer from well known
efficiency problems, but in our view the lack of intuitiveness (principle 1) is a more fun-
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damental problem. For straightforward strict functional computation, graph reduction is
a reasonablc iepriesetation, but there are simpler ones. For more general computations
(lazy or stateful), graph rewriting provides a very general representation, but the graph
transformations are low-level and difficult to visualise and, in the case of laziness, the
execution order is even more so.

1.3 So what is left?

We only know of two existing models which may meet the criteria, namely the dataflow
model and the actor model.

We do not have a completely new model to propose, and we would be surprised to
discover a completely new model which meets the above constraints, so we are left with
these two possibilities, or some combination. Before we explore this further, we need to
briefly describe the key ideas of the UFO language.

1.4 United Functions and Objects

Space permits only a listing of the key ideas here. Readers wishing to learn about the
UFO language in detail should consult the UFO papers [2, 71. The relevant features of
UFO are:

"* Parallelism by default; sequencing is by data dependence, and by queueing for access
to stateful objects, only. This implies that the computational model is not allowed
to hide parallelism and also that it needs local synchronisation.

"* A well-defined subset of UFO is a higher-order functional language, but incorporat-
ing the 00 notions of classes and inheritance with dynamic binding. It also has
integrated functional arrays and loop structures, in the style of SISAL [6).

" UFO has stateful objects, with updateable instance variables, which are accessed
by a queuing mechanism like actors (5]. A single-update scheme provides internal
coherence. Also like some actor languages, UFO provides conditional message ac-
ceptance. An object may accept certain messages only when particular conditions
(defined in terms of the values of the instance variables) are met. Amongst other
things, this allows non-strict or lazy data structures to be programmed if required.

" Unlike most actor languages, e.g. ABCL[15] and HAL[8], UFO has a static type
system which provides type safety but with considerable flexibility. Overloading,
subtyping via inheritance, and genericity are all supported. In addition, the type
system provides important static protection from some of the problems associated
with the transition from a pure functional environment. In particular, stateful
objects can always be identified statically, and there is a static guarantee that a
function cannot modify its arguments, even if they are stateful.'.

'The guarantee is a structural one, not merely a parameter passing convention
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2 The UFLOW model

2.1 Dataflow or actors?

The UFO language design, and the motivation for that design, strongly suggest that
aspects of both models are required. Dataflow is the obvious way to represent the (strict)
functional computation which is the natural way to write many applications (especially
numerical ones) in UFO. On the other hand, UFO provides the facilities of a concurrent
object-oriented language, and the natural way to view such computation is in the actor
style. The duality is illustrated by the syntax of a method call, where the functional style
f(x,y) and the 00-style x.f(y) (in 00-speak: send message f(y) to the object x) are
interchangeable.

In the dataflow model, data, as tokens on arcs, flows to methods at nodes. In the actor
model, messages containing methods flow to nodes containing objects. So the models are
in some sense inverses of each other. The other significant difference is that, in the
simplest versions at least, dataflow describes purely functional computation, while actors
have state.

We considered two possible approaches. The first attempted to give a single unified
view of the computation, allowing both aspects to be represented in the same graph
structure. It turns out that this can be done, but the resulting model is rather complex
and unsatisfactory in a number of ways. There are several different sorts of nodes and
arcs, and the same piece of code can be represented in multiple ways.

We therefore concluded that it was better to have two separate views, the computa-
tional view and the object view. The latter is a straightforward representation of (possibly
stateful) objects, and it is mostly the computational view which is of interest here.

The computational view turns out to be a remarkably conventional dataflow model,
with strong similarities to IF1[4]. Arcs carry values which are primitive data values,
references to objects, or references to methods. A node consists of a number of slots,
which hold constants or are the targets of input arcs. The first two slots are distinguished.
The first slot, when filled, contains (a reference to) the object, i.e. ,he first (primary)
argument of the method. The second slot, when filled, contains the method. The other
slots, if any, are for further arguments. e.g. the body of the function:

g(X: Int ): Int is { y = 2; return x.f(y) }

is translated to:

1 S C 2 C const) I y
2 S ( P x C Intlf N 1 ) I

Node 1 has two slots, the constant 2 and the "method" const which simply outputs
the constant value, giving y. Node 2 has 3 slots. P x denotes a slot whose input is a
parameter x, i.e. an input to the graph. The third slot, on the other hand, takes its input
y from node 1. In the middle, the method, (which is constant, hence the C) is given, using
its full disambiguated name Int If. Both nodes are Simple, and both have result type
Int.

Normally, a node is enabled when all its slots are full. An exception to this occurs
when the method call blocks on access to a stateful object (see later). A node, once
enabled, will be fired, but not necessarily immediately.2

2The form of the nodes may suggest a similarity to packet based graph reduction, and therefore
inefficiency. However, in this case the process is all data driven, and we do not attempt to (directly)
implement non-strict semantics.
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The model also includes compound nodes, which represent control structures such as
conditionals and loops. These are rather similar to those in IFI, so we omit the description
here and once more refer the reader to [1].

2.2 Method call and strictness

In any dataflow model, a key issue is how to model reentrancy. There are two common
approaches, namely tagged tokens and graph copying.

Tagged tokens are most appropriate when parts of a graph can start executing before
other inputs are available. However, this is inefficient in space, which is particularly
problematic for visualisation purposes, and can be a problem in a real implementation,
exascerbating the problem of parallelism control or "throttling" [12]. We prefer a model
in which a method call happens at an identifiable moment in time, after all the inputs
are available, at which point the graph is expanded, and input tokens are placed on the
appropriate arcs. Because the method may be dynamically bound, the graph produced
may depend on the first element of the node (the object) as well as the second (the
method). However, note that this is the only way in which dynamic binding affects
the model, and other dynamic binding strategies, such as multimethods, could be easily
accommodated.

Once the graph has been generated, the node has done its job. The node is conceptu-
ally replaced by a box containing the graph. The box has no computational role, it merely
serves as a container for the nodes. For visualisation purposes, the box remains in place
until all activity within it has finished.

We can now summarise some important aspects of the model:

"* Data driven: Data flows to nodes which become enabled when all the necessary
inputs are present.

"* Strictness: all arguments to a node are evaluated before the node is enabled. This
may seem restrictive, but it makes the other desirable properties possible.

"* Maximum parallelism: Enabled nodes may be fired in any order, but all must be
fired eventually.

"• No suspended computation. Nodes become enabled, fire, and always terminate.
They never suspend or block.

The model as defined thus far has the futher useful property that it is possible to
measure the "inherent" parallelism of any program / data set, independently of the target
architecture, and independently of the actual evaluation order.

2.3 Higher-order functions
Function values may be represented simply by having references to functions passed on
arcs rather than fixed at nodes. Partial application is represented using a node which has
dummy slots which do not need to be filled before it fires. The result is a partial application
packet, which can then be passed to other nodes, e.g. an alternative representation for
x.f (y) is to represent the "message" f (y) as a partial application:

2 S ( C Intif N I ) F ( I ) I
3 ( Px N2) I
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The first slot of node 2 is empty, indicating that no input value is expected. The result
of node 2 is the message, a function of type Int -> Int, which is directed to the method
slot of node 3.

We therefore have messages as first class values "for free". Note that the partial
application packet is inserted in a single slot in the node in the usual way; its slots are not
"matched" against the slots in the node. Such matching is an attractive idea, but it does
not work because a node representing a function application cannot in general "know"
whether the incoming function has already been partially applied.

2.4 Parallelism measurement and atomicity

The model as defined thus far has two useful properties which we are about to destroy
the next section. They are still worth highlighting, as many applications, or large sections
of applications, can be sensibly written in the (statically distinguished) functional subset
of UFO which the simple model describes.

Atornicity

The discussion so far has assumed that graphs are expanded down to atomic nodes. In
fact, in any program which terminates and does not crash, we can regard any node as
atomic in the sense that we can fire it and it will eventually terminate and produce its
result, independently of all other nodes. This is important for visualisation purposes, as
it means that the graph can be viewed at any level of granularity, and only those nodes
which are of interest need be expanded. At the implementation level, it means that any
node may be executed sequentially. From the point of view of measuring parallelism, it
allows experimentation with the effects of granularity on parallelism, if we assume that
nodes deemed atomic are executed sequentially.

3 Stateful objects and non-strictness

As explained above, stateful objects have mutable state in the form of instance variables.
Internal coherence is ensured by allowing a procedure to define exactly one new value for
each variable which it updates; the old and new values are syntactically distinguished, like
old and new loop values in single-assignment loops. Interference between method calls is
avoided by locking an object while a procedure is updating it. Messages queue for access,
by default FIFO, but conditional message acceptance can be used to override this; when
the object is unlocked, the first acceptable message in the queue is processed next.

Although here we use stateful objects only to implement non-strict computation, we
expect that in general they will be used in many application areas. In particular, they may
often provide a more natural way of modelling real-world objects than a pure functional
representation. Real world objects have identity and state. They retain their identity
when their state changes, a property which a pure functional representation does not
address .

3

A simple implementation of non-strictness is enough to sketch the model and highlight
the issues, however. The following class implements a straightforward I-Structure location.

3 A good exposition of this view of the world can be found in [9]. It should be remembered, though,
that programs frequently manipulate abstract entities, which are often immutable, as well as real-world
objects.
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An I structure is one each of whose elements is written exactly once; an attempt may be
made to read an element before it has been written, in which case the read is deferred
until the write has been made. A presence bit is associated with each location in order
to detect whether the write has occurred or not.

stateful class ILoc[T]
** Give initial values for the instance variables
{ initial val = null:T;

initial present = false I

accept read when present

** read is a function
read: T is val

** write is a procedure - note similarity to single-assignment loops.
proc write( v: T ): Void is
pro
not present

do
new val = v;
new present = true

od
end ** ILoc

The use of an array of such objects to implement a wavefront algorithm, and general-
isation to more powerful non-strict structures such as futures, are described in [71.

The implementation relies on conditional message acceptance: reads are only accepted
after the value is written. In a high performance implementation, this would be a built-in
library class, implemented as efficiently as possible, with hardware support if available. '

Representation of the methods is straightforward. In particular, the body of procedure
write can look exactly like the body of a loop with loop values val and present. The single
assignment updates mean that parallelism can be exploited within the body of a procedure
just like anywhere else.

For visualising stateful objects, the object view becomes more important. More pre-
cisely, encapsulation requires two versions of this view: one of the outside of an object
(the state of its message queue, and any public instance values) and one of the inside
(the instance variables and private instance values). For instance, an I-Structure with a
blocked read would appear in the computational view as a node with all inputs present,
but not enabled. In the outside object view, we would see our read request in the queue,

"4We note in passing that this example neatly illustrates the difference between acceptance conditions
and preconditions. If an acceptance condition is not met (read when not present), the method simply
is not accepted yet. In the computational view, this appears as a node which, although all the inputs
are present, is not yet enabled. If a precondition is not met, (write when present) an error occurs. Also,
it seems to us that the acceptance condition is a property of the object: it decides what messages it is
currently prepared to accept. The precondition, on the other hand, seems more naturally a property of
the method: it decides whether it can cope with the state it finds when it gets there.
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poerhaps along with others (the user could follow these back into the computational view).
We would also see that the object is is unlocked, but is only accepting writes. In the in-
side object view, we see the values of the instance variables, and in particular that the
presence bit is not set. Typically, a user of the class would not need to see (perhaps even
not be allowed to see) the inside view, but the designer of the class would. The object
views would also allow the user to follow references between objects.

What are the consequences of introducing state? The maximum parallelism principle
still applies: it is still ok to fire enabled nodes in any order provided all are fired eventually.
Blocking on stateful objects (either because of mutual exclusion or because of CMA) shows
up in the computational view as nodes which are not enabled even though they have all
their inputs. There is still no notion of suspended computation. Deadlock appears as a
situation where no nodes are enabled, and can be traced by investigating which nodes are
blocked and why (by flipping between the views).

However, there are several difficulties. The parallelism in the program is no longer
independent of evaluation order: indeed some orders may lead to nontermination or dead-
lock while others do not. The atomicity property no longer holds in general, as there can
be implicit dependencies between nodes which may require one node to fire before an-
other can terminate. In general, programs are much harder to visualise and reason about.
Implementation is also more difficult, as described below.

Nevertheless, we believe that stateful objects are necessary for some applications, and
that these problems are inherent, and not an artifact of our model. The UFO type
system allows us to distinguish statically which objects are stateful. The model provides
a natural representation both of the overall computation and of the behaviour of the
individual objects.

4 Implementation issues

4.1 Scheduling

The scheduling mechanism must guarantee that all enabled nodes get fired eventually,
but otherwise it is not semantically constrained. For visualisation purposes, a user might
well decide by clicking a mouse which node to fire next. However, when not user-guided, a
scheduling strategy is necessary. The main consideration is limiting the number of nodes in
existence at any one time, to limit store usage (and screen usage in the visualisation case).
The basic strategy therefore is to go breadth-first until enough parallelism is generated,
depth-first thereafter. For loops earlier cycles should be done first. This is straightforward
to implement in the pure functional case, but blocking on stateful objects may result in
there being no enabled nodes on the "ideal" path.

4.2 Efficiency

Obviously the model maps very directly onto modern dataflow architectures. For instance,
the graph expansion on firing a node is equivalent to allocating an operand segment in
the EM4 machine.
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For more conventional architectures, the code must be transformed to a threads-based
model. A suitable model, incorporating variable granularity, lazy task creation, and load
balancing via active messages is described in[141. The main problem with such models

is making the threads large enough, as conventional machines tend to have very long
(relative to our requirements, at least) context switching times. In the pure functional

case, the implementation can use whatever thread granularities it likes (even a single
serial thread), and the semantics are preserved. In the presence of stateful objects, this

is no longer the case, as there are implicit dependencies between nodes, and using large
threads may well cause spurious deadlock.

A naive correct implementation is to generate a separate thread for each node repre-
senting a method call on a stateful object. The game then is to optimise this by detecting
as many cases as possible where the separate thread is unnecessary, and thus merging
threads. The type system provides a certain amount of useful information in this regard.

Of course there are many other issues to address, for instance load balancing and data
distribution. For simple applications involving arrays and loops, we expect to be able
to apply existing technology such as that used in parallelising Fortran compilers, and

particularly that used in the SISAL project[6]. For more irregular computations, we will
draw on our own experience with parallel functional implementations [3, 13] and on that
from the concurrent OOP community.

4.3 Current status

The intermediate format based on the model has been defined[l], both as a textual for-

mat and in terms of a collection of UFO data structures. It provides the basis for a
visualisation and debugging tool we are developing, and will be used in a portable opti-

mising UFO compiler for parallel machines, initially targetted at the KSR1 machine at
Manchester. Current work is concentrating on sharing and update-in-place analysis, and
efficient implementation of stateful objects.

Acknowledgements

The UFO project is supported by a grant from the former Science and Engineering Re-
search Council.

References

[1] J. Sargeant, C. C. Kirkham, S. Anderson: The UFLOW Computational Model and Interme-
diate Format Technical report UMCS-94-1-5, Department of Computer Science, University
of Manchester, 1994.'

[2] J. Sargeant: Uniting Functional and Object-Oriented Programming Invited Paper,
International Sympoisum on Object Technologies for Advanced Software, Kanazawa, Japan,
November 1993 LNCS 742, pp 1-26.

5 UMCS Technical reports are available by anonymous ftp from ml.cs.man.ac.uk, directory /pub/TR,
report number as filename.



308

[3] J. Sargeant, 1. Watson: Some experiments in controlling the dynamic behaviour of
parallel functional programs, Proc. Workshop on the Parallel Implementation of Func-
tional Languages, Southampton, June 1991, Southampton University tech. report CSTR
91-07, pp 103-121.

[4] S. K. Skedzielewski and M. L. Welcome: Dataflow Graph Optimization in IF1 in J-P.
Jouannaud (editor), Functional Programming Languages and Computer Architec-
ture, ppi7-34, Springer-Verlag, NY, 1985.

[5] G. Agha: Actors: A Modei of Concurrent Computation in Distributed Systems
MIT Press series in artificial intelligence, 1986.

[6] D. C. Cann: Retire Fortran? A debate rekindled Communications of the ACM 35(8),
August 1992, pp 81-89

[7] J. Sargeant: United Functions and Objects: An Overview Technical report UMCS-

93-1-4, Department of Computer Science, University of Manchester, 1993.

[8] C. Houck, G. Agha: HAL: A High-level Actor Language and its Distributed Im-
plementation Proc. 21st International Conference on Parallel Processing, August 1992.

[9] G. Booch: Object-Oriented Analysis and Design with applications, second edition,
Benjamin/Cummings 1994.

[10] M. Haines and A. P. W. Bohm: Towards a Distributed Memory Implementation of
Sisal, Scalable High Performance Computing Conference, April 1992.

[11] E. Mohr, A. Kranz, R.H. Halstead: Lazy Task Creation: A Tecnique for Increas-
ing the Granularity of Parallel Programs ACM Conference on Lisp and Functional
Programming, Nice, France, June 1990.

[12] C.A. Ruggiero & J. Sargeant, Control of Parallelism in the Manchester Dataflow
Machine, in Proc. 1987 Conference on Functional Programming Languages and Computer
Architecture, Portland, Oregon, 1987.

[13] J. Sargeant: Improving Compilation of Implicit Parallel Programs by Using Run-

time Information, Proc. Workshop on Compilation of Symbolic Languages for Parallel
Computers, San Diego, 1991, Argonne National Laboratory tech. report ANL-91/34, ppl29-
"148.

[14] I. Watson: SLAM: Lazy Task Creation and Dynamic Load Balancing Using Ac-
tive Messages. Internal report, Deptartment of Computer Science University of Manch-
ester 1994. In preparation.

[15] A. Yonezawa (ed.): ABCL, an Object-oriented Concurrent System, MIT press Com-
puter Systems Series, 1990.



PART X

SHORT PAPERS



Parallel Architectures and Compilation Techniques (A-50)
M. Cosnard, G.R. Gao and G.M. Silberman (Editors)
Elsevier Science B.V. (North-Holland) 311
0 1994 IFIP. All rights reserve'I

Software Pipelining: A Genetic Algorithm Approach

V. H. Allana and M.R. O'Neill

"a Department of Computer Science, Utah State University
Logan, Utah 84322-4205 allanvOvicki.cs.usu.edu

Abstract: Software pipelining can be facilitated by applying a genetic algorithm to a
petri net representation of the cyclic dependencies present in a loop. By restricting the
transformations to only increase minimum times between nodes, a legal schedule is always
produced. The objective function rewards low effective initiation interval. When compared
to the basic petri net algorithm, significant improvements are realized.
Keyword Codes:C.1.3, D.1.3, D.3.m, L2.8

1 Software Pipelining and Genetic Algorithms

Software pipelining is a loop optimization technique in which the body of the loop is
reformed so an iteration of the loop can start executing before the previous iterations of
the loop have finished [RF93]. In this research, we have developed a genetic algorithm for
performing software pipelining which is a marked improvement over existing algorithms
in result and comprehensiveness.

One can create a dependency graph G(N,A) in which the nodes, N, represent oper-
ations and the arcs, A, represent a must follow relationship. An arc a --+ b must be
annotated with a dif, min pair. Dif is the difference in the iterations from which the op-
erations come. Min is the time which must elapse between the time the first operation
is executed and the time the second operation is executed. Figure 1(b) shows the data
dependence graph for the loop body of Figure 1(a). Figure 1(c) shows a dependence
constrained schedule for the first three iterations.1 Iterations progress horizontally while
time progresses vertically. Each row in the schedule is a parallel instruction.

The operations shown in the box repeat and form a new loop body. The code before
the repeated section is termed the prelude while the code after the repeated section is
termed the postlude. This new loop body together with the prelude and postlude is
termed a software pipeline. The term effective initiation interval is the average number of
time units it takes to complete a full iteration. Using petri nets[GWN91] which models
data dependency, we are able to create a schedule. Nodes become transitions in the petri
net, each arc becomes a pair of arcs in the petri net, and places are inserted between
dependent transitions to keep track of what may fire next. The number of tokens in each
place is determined by the dif value on the arc represented by that place. Resources are
added using the tokens within a resource place to model a limit to the number of resources

'In this schedule, some operations have been delayed to preserve the regularity of the schedule.
A full copy of this paper is available via anonymous ftp to slow.cs.usu.edu, directory pub/Thesis.
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Figure 1: (a) Original loop body (b) Data dependence graph of loop body (c) Software
Pipelined loop body (d) Corresponding Petri Net

[RA93]. Since the algorithm is deterministic, it is guaranteed that a repeating pattern will
be found. Figure l(d) shows the corresponding petri net for the example in Figure l(a).

Using a petri net to generate parallel schedules compares favorably with other tech-
niques [RA93]. Since scheduling is known to be NP-complete, no heuristic technique can
hope to produce optimal results. We attempt to produce optimal schedules by coupling
the petri net algorithm with a genetic algorithm to locate the best schedule within the
search space. Genetic Algorithms (GAs)[Gol89] are stochastic search algorithms that
mimic biological genetics in their search for the perfect environmental fit. GAs are based
on Darwin's concept of "survival of the fittest" in nature. The algorithm maintains a pop-
ulation of solutions, called individuals or chromosomes, that reproduce for some number
of generations. Those individuals that are fittest have the highest probability of contribut-
ing to the next generation of individuals. For simplicity, it is assumed that an individual
is represented as a fixed string of bits that can be decoded as a solution, and whose fitness
can be measured with an objective function (termed the fitness function) used to evaluate
the quality of the solution. It is up to the user to model the objective function correctly.
The GA will attempt to optimize the solutions based on whatever fitness function it is
provided. We have chosen to minimize the effective initiation interval because it closely
approximates run time, and we can compare our results with Lam[Lam88I, who attempts
to minimize this metric.

One of the advantages of the genetic algorithm is its ability to effectively search an
exponential solution space in polynomial time. The complexity is a linear function of
the population size (P), the number of generations (Gen), and the complexity of the
fitness function (FF). Other software pipelining algorithms use heuristics to produce a
schedule. By making assumptions about the solution space, however, heuristic methods
run the risk of getting caught in a local minima. The heuristic methods are polynomial
because they reduce the solution space some way. A potentially good area of the solution
space, therefore, is ignored by the heuristic. This is especially dangerous if the heuristic
is currently sampling a false peak in the solution space. If the discarded area contains
the optimal solution, it will never be found. The GA reduces that risk by sampling many
points in parallel. When a heuristic cannot perform well, often a GA can. It is not bound
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Figure 2: Exi: (a) Date Dependency Graph (b) GA Schedule (c) Regular Schedule

by any decision rules. It is stochastic, not deterministic. A GA can, therefore, adiapt itself

to the problem at hand.
The petri net solution to software pipe~ining has the property that operations are

scheduled as early as data dependencies and resource conflicts allow. In [RAg3], it is

shown that in the absence of resource conflicts, the petri net produces an optimal schedule.

However, the conflicts present in real machines cause an occasional non-optimal schedule

to be produced in every heuristic software pipelining technique.

We seek tA perfurm truth preserving transformations on the dependency graph with

a Genetic AhI, .ithm. We will let the GA increment the mnm time on an arc. This has

the effect of overriding the greedy earliest firing rule by delaying nodes. To evaluate the

quality of a point in the search space, we run the petri net algorithm on the modified

dependency graph and measure the effective initiation interval. The search space is aovad

as only legal schedules are produced. It is not known whether the space is complete (i.e.,

all possible legal schedules could be generated).

2 Results and Conclusions

Consider the example of Figure 2(a) in which the minimum initiation interval (without

conflicts) is 6/2 = 3. Assume nodes n, 4 and 10 conflict, for example, because each

operation uses a resource of which there is only one copy. Using the genetic algorithm we

are ae bleto achieve an initiation interval of 3 (which is optima) as shown in Figure 2(b).

The new loop is in parallel instructions (PI) 11 through 13. With the petri net alone we

get a loop body of 4 as shown in Figure 2(c).

Table 1 shows the results of a number of test cases comparing the original petri net,

Lam's algorithm, and the Genetic Algorithm. The column entitled Eli is the effective

initiation interval. The examplheof Figure 2 is shown as Exl in the table. The schedules
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Table 1: Improvement By Genetic Algorithm

Petri Lam GA Change
Example Ell I El Eli Petri Lam

Ex- 4.00 4 3 +1.0 +1
Ex2 4.50 6 4 +.5 +2
Ex3 4.33 4 4 +.3 0
Ex4 2.50 2 2 +.5 0
Ex5 4.20 4 4 +.2 0
Ex8 5.67 5 5 +.7 0
Ex7 3.25 3 3 +.3 0
Ex8 3.33 3 3 +.3 0
Exg 6.50 5 5 +1.5 0
Exl0 6.90 8 6 +.9 +2
Exil 3.00 2 2 +1.0 0

Average 4.38 4.18 3.73 .65 .45

represent cases in which the genetic algorithm is able to improve the results of the regular
petri net schedule. Many of these are examples in which the petri net is worse than Lam,
and the GA is able to achieve Lam's results. In some cases, the GA has the best schedule.
Other cases not shown include those in which the petri net is better than or equal to Lam,
but th( GA found no improvement. These results demonstrate the ability of the Genetic
Algorithm to find the global best schedule.

Though the petri net algorithm is a powerful software pipelining technique which
compares very favorably with other scheduling techniques, we are able to improve the
results by applying a genetic algorithm. In the near future, we will optimize the genetic
algorithm to this specific problem. We will run the algorithm on a wide variety of problems
and analyze the effectiveness of the algorithm under such factors as resource scarcity. We
will also examine whether petri net transformations (such as adding a pacemaker [RA93])
will affect the results.

References
[Go189] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Lea-ring. Addison-

Wesley Publishing Company, Inc., Menlo Park, CA, 1989.

[GWN91] G.R. Gao, W-B. Wong, and Q. Ning. A Timed Petri-Net Model for Fine-Grain Loop Schedul-
ing. In Proceedings of the ACk SIGPLAN '91 Conference on Programming Language Design
and Implementation, pages 204-218, June 26-28 1991.

[Lam88] M.S. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines. In
Proceedings of the SIGPLAN '88 Conference on Programming Language Design and Imple-
mentation, pages 318-328, Atlanta, GA, June 1988.

(RA93] M. Rajagopalan and V. H. Allan. Efficient Scheduling of Fine Grain Parallelism in Loops.
Proceedings of the 26th Annual International Symposium on Microarchitecture, 24(1):2-11,
December 1993.

[RF93I B. R. Rau and J. A. Fisher. Instruction-Level Parallel Processing: History, Overview, and
Perspective. The Journal of Supercomputing, 7:9-50, 1993.



Parallel Architccturcs and Compilation Techniques (A-50)
M. Cosnard, G.R. Gao and G.M. Silberman (Editors)
Elsevier Science B.V. (North-Holland) 315
0 1994 IFIP. All rights reserved.

Parallel Compilation on Associative Computers

Chandra R. Asthagiria and Jerry L. Potterb

aComputer and Information Science Department, Cleveland State University, Cleveland,
OH 44115, USA

bMathematics and Computer Science Department, Kent State University, Kent, O1

45422, USA

Abstract: This paper presents two optimizing associative parallel compiling techniques.

Keyword Codes: C.1.0; C.1.2
Processor Architectures, General; Multiple Data Stream Architectures (Multiprocessors)

1 Introduction

This paper briefly presents two compiling techniques that were developed and imple-
mented using the associative computing (ASC) model[4] t. improve compilation speed.
Refer the survey article[6] for parallel compilation on various other parallel architectures.

With a massively parallel associative SIMD computer' (such as the Active Memory
Technology DAP or the Loral Defense System ASPRO) and simple tabular data structures
as its basic components, the ASC model supports the concept of processing an entire file
of data in parallel. In effect, the records are mapped onto the rows of the tabular data
structure, and each row is dedicated with a processor (PE). This model contains a number
of constant time associative operations such as associative search, data parallel comparison
and numeric computation, and certain built-in functions such as maxdex/mindex to find
the maximum/minimum of a field, and the sibdex to find the minimum value larger and
the maximum value smaller than a given input value. These operations take log n timie
on the conventional MIMD models. See Potter [4] for details about the architecture and
uses of this model including a discussion of constant time operations.

2 Associative Parallel Lexing

The associative lexing decomposes the source program into tokens and stores them in the
same field of parallel memory. It assumes that one input character is stored per processor
and each source token is surrounded by at least one delimiter (e.g., a blank) on either

'An associative SIMD computer emulates associative memory aspects via associative search, but is
more powerful than associative memories in the sense that the responding items are processed in situ.
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STEPs I and 2 STEP 3
<- Ttoken- > tklen during

<-token--> iteration
Shift No 0 1 2 3 4

code 1 2 3 4 bi tkbi Wkien Token tkbi
1 a b c d ? 1 I ? abcd 1 0 1 2 3 4
2 a b c d e ? 1 0 ?
3 c d e ? 1 0 ?
4 c d I e ? 1 0 ?

5 d e e f ? 1 0 ?
6 f e f g ? 1 0 ?
7 e f g h ? 1 I ? efgh 1 0 1 2 3 4
8 e f g h i ? 1 0 ?
9 f g h i € ? 1 0 ?

10 g h i C ? 1 0 ?
11 h i t m ? 1 0 ?
12 i f m ? 1 0 ?
13 m n ? 1 0 ?
14 m n o ? 1 1 ? i 1 0 1 1 1I
15 m n o ? 1 0 ?
16 n o ? ? 1 1 ? no 1 0 1 2 2 2
17 n o C ? ? 1 0 ?
18 o0 ? ? ? 1 0 ?
19 ? ? ? ? 1 0 ?
20 ? ? ? ? ? 1 0 ?
21 ? ? ? ? ? ? 0 0 ?

Notation: = NEWLINE, ? = undefined

Figure 1: Lexing

side. If the maximum length of a token is N (N is 4 in Fig. 1), it does the following:
I. It makes N parallel shifts 2 of 8 bits to the right and I word up (It moves one character
up laterally so that at the ih shift (1 < i < N) all of the i characters of each word are
moved up and aligned in the same row). After the N"h shift, each of the tokens of length
N or less is in the array word that contains the left delimiter in the initial position. The
result is a 2-dimensional table (Ttoken field in Fig. 1) of n rows and N + 1 columns of
source characters, where n is the number of characters in the source input. The first
column of the table (marked by 1 in bi field) is the entire set of input characters loaded
initially into the parallel memory. The remaining columns contain shifted characters.
2. It recognizes all rows with tokens (Any row in the table, containing a delimiter in the
leftmost position and a non-delimiter character in the second position, contains a token.)
and marks them as active token entries in parallel (tkbi = 1 on rows 1,7,14, and 16).
3. It initializes the length of all tokens to 0, recognizes the leftmost token in all token
rows in parallel and fills the rest of the token rows with zero (null character). As it
is scanning all of the token rows in parallel to recognize the end of tokens (a space or
N"h non-null consecutive character), it increments the length of all tokens by one if their
current character is non-null and once the end of token is recognized, the length remains
fixed. Now, the array contains only tokens (See the right half of Fig. 1) and these tokens
need not be contiguous for later phases of compilation.

The execution of each of the above steps depends on the fixed maximum field width of
a token, not on the length of the input. This constant time complexity is an improvement
over the Q(log n) (n is the number of input characters) time complexity of the thus far

2
Note: This algorithm assumes a one dimensional grid interconnection network between adjacent cells.
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reported best parallel lexing algorithm[3, 61.

3 Associative parallel Expression Compilation
In order to use associative parallelism to its fullest, the expression tokens with attributes
such as the structure code3 (SC), associativity (Ac), commutativity (Corn), priority (Pr),
and precedence (Prec4 ) are stored vertically in a parallel array (See Fig. 2). The associated
items of a token are stored in a common associative cell which includes a dedicated PE.

Token at reduction sc Pr nes Prec Corn Ac opr ID Proc at reduction 10. Quad.
0 1 2 3 4 3 1 2 3 4
a a a T, T, 010000 0 0 0 0 0 0 10 00

+ + + 020000 9 0 9 1 1 1 0 0 0 0 1 1 3 + a 71 T,
b b T, 030000 0 0 0 0 0 0 1 0 0 0 1 1

040000 9 0 9 2 1 1 0 0 0 0 0 1 4 -T 1 c T
c c c c 050000 0 0 0 0 0 0 1 0 0 0 0 1
+ - 060000 9 0 9 1/2 1 1 0 0 0 1 1 1 2 -b T T,
d T, 070100 0 1 0 0 0 0 1 0 0 1 1 1
+ 070200 9 1 22 1 1 1 0 0 1 1 1 1 1 + d e T,
e 070300 0 1 0 0 0 0 1 0 1 1 1 1

Note: Five columns under Token/Proc denote a single field of Token/Proc at different iterations
AC=I: Left associative, ACn2: Right associative, Corn=1lcornmutative, Com=2:Weakdy non-commutative

Figure 2: Reduction of Expression 'a + b - c ± (d + e)' in Associative Cells

The associative compilation uses massive parallel associative search in place of conven-
tional shift-reduce procedure to generate optimized intermediate tode for an expression
in a single pass. It selects the cell with one of the highest precedence operators' by
searching all cells for attribute type 'operator' (opr) and then searching for the maximum
precedence. Both searches are performed in parallel in one step each. Then it selects the
operands for the operator in one parallel search using the sibdex function. Then it reduces
the selected triple by generating an intermediate quadruple, 'opr operandl operand2 re-
sult' with result being a temporary variable to hold the value of the operation ('+ d e
T1' in Fig. 2), replacing operandl of the source code by result ('a + b - c ± T7 ', column I
of Token field in Fig. 2), and inactivating both operand2 and operator (Proc field entry
becomes 1 in Fig. 2). Then it continues the evaluation on both sides of the recent result
temporary as long as the evaluation of the new operator does not violate the mathemat-
ical axioms on priority and the same result temporary can be used for all of the results
in the sequence, thereby minimizing the number of temporaries needed. For example, it
treats 'a + b-c+ T 1 ' logically as 'a + b ±T 1 -c' and reduces it into 'a + T 1 -c' (column 2
of Token field in Fig. 2). Notice that both sequential and Fischer's non-canonical parallel
parsing [2] methods need two temporaries to reduce the same expression (Fig. 3).

3The structure code is a unique integer representation showing the structural information (such as

position and nesting level) of each source token (See Potter[4].). The use of structure codes allows all of
the tokens in the program to be searched in parallel.

4 Precedence (Prec) for all operators in an entire expression/program is computed in parallel using the
equation 'Prec[$] = Pr[$] + nes[$] * k', where k is a constant denoting the priority for parenthesis 'S'
denotes the entire parallel field. See [1] for details on precedence computation.

'if the highest precedence operator is left associative, pick the leftmost occurrence of it, otherwise
pick the rightmost occurrence of it.
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Sequential Method Fischer Method
Expr-ssion No quadruple Expression No quadruple
a+b-c±(d+e) 1 + a b Ti a++b-c,±(d+e) 1 +deT,
T, -c±(d+e) 2 -TI cTI a+b-cd±Ti 2 +abT 2
Ti (d+ e) 3 +deT 2  T2 -c±Ti 3 -T 2 cT 2
TI T2 4 ± TI T2 T1  T2 -±T, 4 T2 T1 T 2
T2 T2

Figure 3: No Register Optimization

This single pass associative compilation of an expression into an optimized interme-
diate code with linear time complexity [1] is better than all other multi pass parallel
approaches with Q(log n) (n is the number of input tokens) time complexity (for parsing)
and linear time complexity (for optimization). This Q(log n) time complexity excludes
the steps in restructuring expressions to a form suitable for parallel evaluation on MIMD
machines and the steps in the overhead of synchronization and communication between
processors. Also, disk I/O being oftun the limiting factor, the single pass feature of the
associative algorithm is a significant feature. Thus, the linear time complexity of this one
pass associative algorithm using no recursion or pointers is better than the linear complex-
ity of the three pass (intermediate code generation, code labeling, and code reordering in
intermediate code representation[5]) sequential algorithms using extensive data structures.

4 Conclusion
The algorithms discussed in this paper, parallel lexing and optimal expression compilation,
use associative techniques to achieve constant time operation. The authors feel that many
other areas of compilation can also benefit from associative techniques.
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Abstract: Multiple-functional- unit architectures allow to boost performances by execut-
ing many operations concurrently but register file technology can provide only with a
limited I/O data-bandwidth, able to support a few, fast, pipelined functional units.

One of the possible solutions to increase the available bandwidth is the adoption of
multiple register banks. In this paper we present a technique for partitioning variables
onto such a non-homogeneous register space. The technique is based on a hypergraph
model and allow a partial rescheduling of the code when a legal partitioning cannot be
found.
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1 Introduction
In a multiple-functional-unit architecture performance is the result of two key parameters:
the number of operations simultaneously executed and the execution cycle-time. These
parameters are correlated since the cycle-time depends, also, on the data-path delays
through the Register File (RF); RF timings are influenced by the number of registers in
it contained and its number of ports - 2 read-ports and 1 write-port per Functional Unit
(FU) are required in order to sustain peak performance. Hence the need for a design
tradeoff among the number of registers, the number of functional units (FIT) and the
cycle-time.

The adoption of multiple register banks can mitigate this bottleneck by decreasing the
I/O bandwidth requirement for each RF; henceforth allowing to create architectures with
a larger number of FUs. These processors require variables partitioned among the register
banks but standard register allocation techniques [2] are not suited to perform this kind
of allocation because of the different locality of distribution of resources (See [1]).

Register allocation techniques frequently rely on the concept of Virtual Registers (VR):
initially operands are mapped onto an ideal register file containing an infinite number of
VRs, this is later constrained to the number of available registers. In case of multiple

*This work was partially supported by Esprit Project 9072-GEPPCOM, ONR N0001486K0215 and
the UCI Faculty Research Grant
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SVLIW Code Interference Hypergraph

LD R RI 000:p R6R1 200:HG - (HN HE)
iR7 <- R5° R6 'R2 <-R1 + 4000: HN- 1.2,3,4,5A67.8)

:R8<--R8+R7 STR7R2100 3 ,HE-,1read,,3 .437-:-S-T' •-3 ,87,7}rg,{ g,4,
:R1 <-R1+8 IR3 -R3+ 1 13•, 141w,

R4 <- 1000 4 8)w.l6,Sw, 7,2}w5

Roc,, R3 >R4 C..OLORINGRED = 11.2.4.5.8)
LD Rx Ry k- Lood mrrlo., Ibe Ry+k nto Fix BLUE - 13.6,7}ST Rx Ry k SttOre RX bIto ry Ioc Ry + k

Figure 1: A well-colored Hypergraph

RFs we assume this operation to be performed by mean of a two-step process: 1) each
operand is assigned to a VR which is allocated to a RF, 2) each RF is constrained to its
actual size.

Our technique can be used to solve the first phase, hence we do not make any as-
sumption about the RFs' size, in that, a later phase will adequately take care of the
allocation within each bank. In our model the process of assignment of VRs to RFs is
solely constrained by the limited number of ports available per RF.

2 Partitioning of Variables
We assume, as a model of execution, a horizontally microcoded, multi-functional-unit
architecture - a Very Long Instruction World architecture [31. The model is parameterized
in the number of register files (R) and the number of functional units (F); and it provides
2F read ports and F write ports evenly distributed among the RFs (i.e., each RF has 2F

read-ports and F write-ports).
Given a program compiled for a single-RF VLIW we must partition its variables into

R sets, each to be allocated on a RF; this can be done by means of a hypergraph HG =

(HN,HE). A hypergraph HG is defined as a set of hypernodes, HN, and a set of hyperedges,
HE; each hyperedge being defined as a subset of the set of hypernodes. Each hypernode
in HN is associated to one and only one VR in the code, and each hyperedge in HE models
the competition among VRs concurrently accessed within an instruction.

Figure 1 presents a VLIW code fragment and its Interference Hypergraph. VRs
{R1..R8} are associated to hypernodes {1..8} and read(write) hyperedges are represented
as stars of dashed(solid) arrows, each one connecting the set of hypernodes associated to
VRs accessed in one instruction. In this model colors are used to represent the RF in
which a VR is contained, hence the number of nodes of the same color contained in a
read(write) hyperedge is equivalent to the number of operands concurrently read(written)
from(in) a same RF.

A read-hyperedge containing no more than -F nodes of the same color is said to be
R

well-colored, and is representative of an instruction which access no more than R operands
stored in the same RF and that, therefore, can be legally executed2 .

2 Write operations are dealt with in the same fashion, but for the different number of write-ports
available: F.
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procedure COLOR-HYPERGRAPH;
for each hEdge E HE W]

LABEL: DeferredOP
for each node E nodesOf(hEdge) [

if (NOT isColored(node)) n3
min = MAXINT;
minColor = UNCOLORED;
for each color E COL

number = maxNumberColored(node,color);
if (number < min)

minColor = color;
min = number;

end if
end for
if (minColor == UNCOLORED)

op = chooseAnOpToDefer(hEdge,node); n4
deferOp(op); M
GOTO DeferredOP;

else
colorNode(node,minColor); F6

end if
end if

end for
end for

Figure 2: Hypergraph Coloring Algorithm

In Figure 1 the Interference Hypergraph of code produced for a 2-wide VLIW is well-
colored with 2 colors - the code can be legally executed on a 2-RFs VLIW.

2.1 The Coloring Algorithm
The algorithm (See Fig. 2) is based on three nested loops. The outermost one sequentially
picks one hyperedge (hEdge) at a time (Q) and for each hypernode contained in hEdge
(), and not already colored ([b, it assigns a color ([]) that minimizes the maximum
number of nodes with the same color in any hyperedge of the hypergraph.When the algorithm runs into a situation in which a hypernode is not colorable (M•),
since any color, legal within hHedge, would make other hyperedges illegal, then the code
must be locally rescheduled to permit the continuation of the process. This is achieved by
deferring an operation (E), chosen among those that access the VR associated to one of
the uncolorable hypernodes. If the process is not possible, for lack of resources or because
of existing dependencies, then new (empty) instructions are introduced, and the code is
locally recompacted.

The deferral of the selected operation may require other operations to be moved, since
the presence of anti/output-dependencies may prevent the transformation. When such a
situation is detected the transformation tries to defer first the operation at the bottom
of the chain of dependencies and if a cycle of dependencies is found this is broken by
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VLIW COOE INTERFERENCE
HYPERGRAPH

ii a b+c'b=a+d!

I ilr ead i~wrdle

i1tb=a +di Nap
i2: b-b' ia=b+c ~ n~im~~uiuwi

...... .. ..... .. ...... .i.................... ewd ilread i2read ilwmille

Figure 3: Deferring of an operation within a circular dependence

inserting a copy operation. (see Figure 3).
A useful optimization of the process is obtained by ordering the set of hyperedges

according to the probability of execution of the associated instructions; the process of
coloring becomes progressively more constrained hence by following this order we increase
the probability of having to resort to a code transformation in less frequently executed
sections of code.

The coloring algorithm was applied to a set of 13 benchmarks, representative of com-
mon scientific code, previously compiled for a single-register-file VLIW architecture; we
took into considerations 3 configurations: a 8-wide VLIW with 4 and 2 RFs, and a 4-wide
VLIW with 2 RFs (See [1]).

In most of the cases it was possible to assign each VR to a RF without the need for
altering the code, and even when the algorithm had to transform the code the relative
performance degradation was always below the 5% of simulated run-time,

3 Conclusions

A possible solution to mitigate the RF requirements in terms of I/O bandwidth in a VLIW
architecture is the adoption of multiple register banks; however producing code for this
kind of microprocessors requires operands partitioned onto a non-homogeneous register
space.

In this paper we have proposed a model for partitioning variables onto multiple RFs
via hypergraph coloring; we have also supplied an algorithm for this task which is able
to partially reschedule code when a legal solution cannot be found. Experimental evi-
dence suggest that code produced by the proposed technique presents little performance
degradation when compared with code produced for a single-RF VLIW.
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1 Computation-reduction expressions

Pairs of computation-reduction expressions appear frequently in parallel programs. First,
the computation expression computes a set of values, and then the reduction expression
reduces the set of values to a single value or gathers the values to build an aggregate
structure. An array sum reduction returns a scalar value by adding together all array
elements. A histogram is a transformational reduction that counts the number of oc-
currences of a value in one array and stores the count in another. A recurring theme
in particle physics codes is the calculation of bond forces. The forces between particles
are calculated, and then the force incident on each particle is computed. Since pairs of
computation-reduction operations appear frequently in application programs, they are
good targets for optimization. The efficient expression and implementation of these pairs
of operations can reduce the cost of parallel programming.

Since reduction expressions may introduce dependencies, most languages separate the
computation and reduction tasks. Typically, the programmer must write two loops. In
Sisal 1.2 [1], the user must write a for expression to compute the values and a for initial
expression to reduce the values. In this paper we present optimization techniques to
implement pairs of computation-reduction expressions in Sisal 1.2 as single parallel loops.

1 This work was supported by Lawrence Livermore National Laboratory under DOE contract W-7405-Eng-48. This

document was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor the University of California nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California and shall not be used for advertising or product endorsement
purposes.
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This optimization overlaps computation and reduction, reduces runtime overhead, and
reduces storage requirements.

A common pair of computation-reduction expression occurs when computing the
forces between a set. of particles. Consider a set of n particles and m bonds in a bond-list.
Each bond represents a force between two particles. We want to calculate the force of
each bond and then accumulate the force incident on each particle. The following figure
depicts the Sisal code and the 1F1 [2] graph structure of the computation and reduction
expressions.

bond list ions

for bond in bond list

ý bond Positions

indexl, index_2 := end-pointslbond);

Forcerecord := energy(index 1, index_2, Positions)

SForce record

returns array of Force record

Forco codaten

for initial
i := I;

Forces :- array fill(t, n, 0.0)

, i t Forceupdate Forces

while I < array, slze(Force update) repeat

I Force update 1ýForces

i := old i + 1;
index I := Forceupdatefil.index_1;
index_2 := Forceupdate[Il.index_2;
be Force update[i1,bond energy;
Forces old Forces[

index_]: old Forcesfindexi) * be;
index_2: old Forces[index2] - be]

Forces

Sreturns value of Forces

Force out

The top node, the computation expression, is a parallel for expression. It has three
subgraphs: generator, body, and returns. The generator defines a set of index values.
An instance of the body is executed for each value, and it computes a Force-record. The
functions end-points and force return the indices of the two particles participating in the
bond and the force of the bond, respectively. The force records are passed to the gather
subgraph that gathers them into the array Force-update.

The bottom node, the reduction expression, is a sequential for initial expiession. It
has four subgraphs: initial, test, body, and returns. The initial subgraph initializes the
index value and the Forxcs array. The body is executed once for each force record, and
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updates the force on two particles. rhe ,et urs subgraph selects the final valie of ý')cr,.,
and passes it out from the compound node as lhe array oiyv.e.oit. We refer to this
implementation as unolptimized.

We have extended the Sisal compiler to merge the operations of the hot toni node
into the top node, thereby. eliminiati hg the overhead of the for initial expression and the
array of Force-ircords. The t.ompiler generates the following psetido-code and IFI graph
stiucture,

Vroes e - arr I!.. [. ', C)0.0

bond list Positior-s

for bond in bond lists

bond Po•t:•orne

index _ 1, Index 2 ena oPoati :ond):

Force record :- ene/rqy(lrdex ý, inoex 2, Pcs?! Ion%);

be :- Force recorcd.bora enerqy;

LOCK(Forces);

Forces :- old Forces
index 1: old Forces 'Index 11 oe;
index_2: old Forces Index 21 - be];

UNLOCK (Forces) SForces
" returns value of Forces I

SForce or.:

The first node initializes Forecs and passes it to the second node. a parallel for ex-
pression. Its generator is identical to the generator of the original for expression. and its
body and returns subgraphs are compositions of the body and returns s,,bgraphs. respec-
tively, of the original for aiid for initial expressions. Since Forces is a shared resource. the
compiler places a lock in the generated code about any read and write accesses to insure
mutual exclusion. We refer to this implementation as optimized.

Currently, the Sisal compiler ow, ig'; only those pairs of for and for initial expressions
that meet the following five criteria:

1. The for initial expression dependIs direclly on the for expression. and does not
depend on any descendent of tihe for.

2. The initialization clause of the for initial expression is independent of the array of
values consumed.

3. The for initial expression depends on the for expression for only an array of values.

4. The for initial expression consumes every vahle of t lie array of valutes, once and in
order.

5. The for initial expression has ,no loop carried depeindencies other tlhan an index
value and the shared accimnmulato,.
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The shared accumulator refers to the scalar value or aggregate structure returned by the
reduction expression. If the first criterion is not met then the for initial expression could
not execute until the descendent computation completed preventing us from merging the
for and for initial expressions. The second criterion permits us to move the initialization
clause before the for expression. Criteria three, four, and five guarantee that the i-th iter-
ation of the for initial expression depends only on the i-th iteration of the for expression,
permitting us to merge the bodies of the two expressions. Since the compiler does not
test for commutativity, the optimized implementation may be nondeterminate.

2 Conclusions
We ran a series of experiments to evaluate the performance of our optimizations. We used
computation-reduction expressions from molecular dynamics similar to the expressions
used in the previous section. As expected. the optimized code with locks in the parallel
loop used less space than the unoptimized code. It also executed on average five to twenty
percent faster; however, we did not always see appreciable performance gains.

There are many factors that influence the execution time of the optimized code versus
the execution time of the unoptimized code. If the size of the computation expression is
at least p (number of processors) times greater than the size of the reduction expression,
then there is little lock con I-ntion. Essentially, the concurrent tasks contend for the lock
the first time and then become staggered, arriving at the critical section at different times.
However, the time to execute the locks can become significant for large problems. We
wrote a version in Sisal 1.2 that built a Force array per worker and then merged the
individual arrays at the end of the computation. This reduced the number of locks from
one per bond to one per worker resulting in a significant space and time saving.

size 100000 200000 300000 processors 1 2 3 1 4

sequential 12 MB 23 MB 35 MB lock within 2.9 MB 2.9 MB 2.9 MB 2.9 MB
reduction 9 sec 19 sec 28 sec parallel loop 48 sec 28 sec 20 sec 17 seac

parallel 8 MB 17 MB 25 MB temporary 3.1 MB 3.6 MB 3.9 MB 4.3 MR
reduction I8sec 16 sec 24 w with merge 35 sec 19sec 14 sec 11 sec
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An Introduction to Simplex Scheduling
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Abstract: Simplex scheduling refers to an approach where the central scheduling prob-
lems originating from instruction scheduling and modulo scheduling are solved on a sim-
plex tableau (a matr;x) instead of a scheduling graph. By definition, a central schedul-
ing problem is a subproblem of the original scheduling problem, where all the resource
constraints have been removed, and where some extra precedence constraints have been
included to materialize the fact that some of the tasks have already been scheduled.

By using a parametric version of the simplex algorithm, we optimally solve central
scheduling problems involving symbolic valuations of the scheduling graph edges, such
as linear expressions of a yet unknown software pipeline initiation interval. In addition,
by using a lexicographic cost function and by introducing extra equations in the sim-
plex tableau, we also compute optimum solutions to the central scheduling problems in
polynomial time, while simultaneously minimizing the cumulative register lifetimes.

Keywords: Deterministic scheduling; Instruction scheduling; Software pipelining: Mod-
ulo scheduling; Lifetime-sensitive scheduling; Parametric linear programming.

1.1 Why Simplex Scheduling

As a matter of example, let us suppose that we have to build an instruction scheduler based
on the list scheduling heuristic. The list algorithm would run on the scheduling graph
to build a priority list, usually the latest optimal start times of the tasks (instructions).
Then instruction scheduling would take place, according to the rules:

"* copy from the priority list the sublist of the ready tasks, i.e. the tasks whose
predecessors in the scheduling graph have completed their execution;

"* upward scan this sublist, and start at the current time the tasks which do not trigger
resource conflicts with any of the previously scheduled tasks;

"* if the sublist is empty, or if no further scheduling can take place at the current time
without triggering resource conflicts, increment the current time;

"* remove the scheduled tasks from the priority list, and iterate the whole process until
the priority list is empty.

While such a simple process is guaranteed to succeed if the scheduling graphs has
no cycles, it must be significantly extended to cope with the cycles which appear in the
context of software pipelining of recurrent and while loops. In particular, every time a
tas!l of a cyclic graph is scheduled, the margins' of every not yet scheduled task must be

I Recall that the set of allowed start times of a task in a central problem is an interval, whose lower

and upper bounds are respectively called the left margin and the right margin (of the task).
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recomputed. Otherwise there is no wp.Y to detect that the problem has turned infeasible,
a situation which arises whenever there are no start times within the margins of a task
which prevent it from triggering resource conflicts with the already scheduled tasks.

Another drawback of list schedulers is that they exhibit a greedy behavior which has
not received a practical solution beyond scheduling the instructions b',ckwards. Generally
speaking, the more subgoals one assigns to a list scheduler beyond minimizing schedule
length, the more one has to refine the heuristics which computes the sublist of the ready
tasks, often with unreliable results. At some point, backtracking must be introduced [2],
a solution we want to avoid even if it were to achieve register lifetime sensitive scheduling.

1.2 Principles of Simplex Scheduling

Let T be the yet unknown initiation interval of a software pipeline we try to build by
modulo scheduling. Let 1; = {ai}l<i<N be the set of the nodes of the scheduling graph,
that is, the instructions of the loop body. Let E = {(ai,,uj,bk - L3kT)}1<k<M be the set of
the edges of the scheduling graph. The positive coefficients #k, which are denoted Q in
the papers by Rau & :.l. , are non-zero only in the cases of loop-carried dependencies.

By definition of a scheduling graph, each arc (Ox, oi, bO - lkT) materializes a constraint
tj - ti > bk - /kT. One may therefore express all the precedence constraints as:

: :~ •, I_ [ -: (a ,aj,]k-1kr) E V { u

There is nothing especially clever in the above formulation, beyond the fact that we can
now use parametric linear programming to solve the problem of minimizing tN, without
having to guess T'. Indeed computing the minimum value of T for which the problem is
feasible is a natural by-product of the parametric simplex algorithm (see § 1.4). This is
a polynomial-time linear program because U = [ufl is the sign-inverted transpose of the
incidence 2 matrix of the scheduling graph, so this matrix is totally unimodular3 (3].

However, such a matrix formulation becomes really interesting when one realizes that
extra equations can be introduced to minimize the cumulative register lifetimes. To
understand how, let us assume that the arcs (oa, j,, bk, 1 - f4k.1 ), (0'.,, 2 , bk,2 - 3

k, 2 ) ...
carry a register value defined by ai to aj,,, Oj,2 .... Let I, be a new variable which
represents the lifetime of the register value written by ai. Then, by adding the equations
till + #kl, t' - ti <_ I, tj,• + 1k',27 - t' < 1' ... to the constraints, we can make cumulative
register lifetime minimization a secondary goal beyond minimizing t

N. This requires the
lexicographic minimization of the bi-dimensional cost function [tN, 2 1,1 .

Minimizing lifetimes is useful, at least because it prevents the solver from scheduling
the instructions too early, and is practical too. Indeed the augmented problem can still
be solved in polynomial time, since the augmented constraint matrix U' is also totally
unimodular. The demonstration of this nice property comes from the observation that U'
can be obtained from U by duplicating colums, then rows, and by clearing elements of
the resulting matrix in a way which allows the application of a result by Truemper [4].

2The incidence matrix A = [nl] of a graph has one column for each arc, and one row for each node; in
this matrix a• is -I if the arc j leaves the node i, +I if the arc j enters the node i, and 0 otherwise.

3 By definition a matrix with integral coefficients is totally unimodular if all its subdeterminarts are
equal to + 1, -1, or 0. Incidence matrices are guaranteed to be totally unimodular.
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1.3 A Lexico-Parametric Dual Simplex Algorithm

A lexico-parametric linear program is a problem defined by:

lexico-minimize Zu = CTx, x E P(u) = {xlx > 6,Ax < Bu}

where x E Q'n, A = [a4l E Qmxn, B = [bfl E Qm xP, u E QP, C = [fril E Q5q, and

Z [z1I E Qqxp. In this formulation, x = (x,- ... ,xn)T is the vector of unknowns,
u = (u, = 1,u 2,...,up)T is the vector of parameters whose first component is always
1, A is the constraint matrix, B is the constant matrix, C is the co. t matrix, and Zu
the economic function value. An integer lexico-parametric linear progi'.m has the same
formulation, but the components of A, B, C, u, x, Z are further restricted to integer values.

Under the traditional formulation of linear programming, p = q = 1, that is, B and C
are vectors, and Z is a scalar. Parametric linear programming problems were introduced
by Feautrier who formulated and implemented the general method so solve them, both
over the rationals and the integers Ill. The lexicographic extension of linear programming
problems, whether parametric or not, is simple matter. The only extra work implied is
the need to lexicographically compare the columns of CT, instead of comparing scalars.

To solve lexico-parametric linear programs, we shall use an extended version of the
so-called dual simplex algorithm [3]. At any point of the resolution process, all the data
relevant to the simplex algorithm is maintained in the so-called simplex tableau:

OT j jT

(1 ... u, _1 u,) (Y, Y2 ... Yn) (Yn+, ... Yn+.)

Initially, A is A, b is B, C is C, I is the unit matrix, 1 and Z are zero matrices. The
vector y is the concatenation of (xi ... xn), and of the slack variables (s, ... sm). The slack
variables are used to convert the inequalities of the linear program into equalities.

The lexico-parametric dual simplex algorithm maintains the invariant that the columns
of the matrix C0 are always lexico-positive, while the linear forms fBju are initially of
arb~trary sign. The objective of the dual simplex algorithm is to make these linear forms
positive or zero by pivoting, or to detect that the linear program is infeasible. In general
computing the signs of Biu is the tough part of parametric linear programming. However
in our application to instruction scheduling the components of the parameter vector u
always have a known value at any time, so the context [1) is reduced to simple equalities.

To select a pivot aq, we first select among the constant matrix B a strictly negative
line B3,u. Then, among the reduced cost matrix CT, a column q is selected such that:

q_ = lexicographic max -a' •f<o ap

If there is no negative b!,u, the problem is solved and the current solution is optimum. If
there is no aJ < 0 for any negative Bpu, the problem is infeasible.

1.4 Application to Instruction Scheduling

In our application of lexico-parametric linear programming to instruction scheduling,
(xI.. .x) is (ti ... tN, 11... l,-N), A = U', B is such that Bi = (-bi,0,)3i), and u =

.. ....
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(1, S, T). The parameter T is the initiation interval, while the parameter S is used to
probe the set of the allowed start times of the task currently selected for scheduling.

Before starting to schedule instructions, an initial central schedule is built in order
to compute the minimum value of T, called Tr~currence, which makes the central problem
feasible. Remember that a dual simplex algorithm finds the problem to be infeasible
whenever there exists a B6,u < 0 such that a) > 0 Vj in the constraint matrix. In this
case the only way to make the problem feasible is to make bou = 4,T - b6 positive. If
/ > 0, we assign to T the value (b6 - 1)//3,, + 1, and resume the search for a variable p
to leave the basis, otherwise the problem is infeasible. The final value of T is Trecur.ence-

Once a suitable value of T >_ Tr .. r..ce is available, the yet unscheduled tasks are
selected one after the other by a higher-level driver in order to be scheduled. The fact
that a task ai is selected to be the current one to schedule is represented by adding the
pair of inequalities t2 :_ -S A t4 :S S ý= t4 = S to the central problem. The set of the
allowed start times for the current task ao can now be explored by assigning a value to S
in the simplex tableau, and then by running the lexico-parametric dual simplex algorithm.

In practice, after zero or a few pivoting steps, either the problem is infeasible, meaning
that S is outside the current margins of ai, or the new optimal central schedule under the
constraint ti = S is obtained. In the latter case, assuming that the value the outer driver
assigned to S did not make oi conflict on a resource basis with the previously scheduled
tasks, then scheduling or, at t* = S is admissible. This is translated in the simplex tableau
by freezing S, that is, converting any linear form Aj + AkS + A)T in the left hand side of
the simplex tableau (i.e., B and Z) to (A' + A~t!) + A'T.

A nice feature of simplex scheduling is the valuable information it maintains for free.
For instance., whenever the central scheduling problem is infeasible, there exists a Biu < 0
such that aq > 0 Vj. Since the constraint matrix A is totally unimodular at any stage
of the simplex algorithm [3], its coefficients are always -1, 0, or +1. Consequently the
non-null al in the line i are equal to 1. Remember also that each inequality in a linear
program is associated to a slack variable si, 1 < 1 < m in the simplex tableau.

Therefore, by listing the j such that yj is a slack variable, and that aj = 1, one can
find which are the inequalities whose sum yields to the condition impossible to satisfy.
The way we build the linear program implies that these inequalities must come from the
precedence constraints, and not from the lifetime equations. It turns out that the arcs
associated with these inequalities are precisely the arcs of the current critical cycle.
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Abstract: Speculative evaluation can improve the performance of parallel graph reduc-
tion systems through increased parallelism. Although speculation is costly, much of the
burden can be absorbed by processors which would otherwise be idle. Despite the over-
head required for speculative task management, our prototype implementation achieves
70% efficiency for speculative graph reduction, with little impact on mandatory tasks.
Through speculative evaluation, some simple benchmarks exhibit nearly a factor of five
speedup over their conservative counterparts.
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1 Motivation

Graph reduction is a popular implementation technique for non-strict functional program-
ming languages. Because graph reduction is free of side-effects, it is well-suited to parallel
processing. With conservative evaluation, an expression is not evaluated until its results
are actually required. Speculative evaluation increases parallelism by assigning potentially
useful computations to idle processors before their results are required. If a speculative
computation later becomes necessary, the time required to complete the computation is
reduced. On the other hand, if a speculative computation later becomes irrelevant, the
time wasted on its evaluation is unimportant, because the only processors that engage in
speculative computations are those that would otherwise have been idle.

Unfortunately, speculative tasks are difficult to manage [2]. Speculative tasks compete
with mandatory tasks for processors. A speculative task which becomes necessary should
be upgraded to a mandatory task. A speculative task which becomes irrelevant should
be discarded. Shared subgraphs may have to be repaired whenever a speculative task is
terminated prematurely.

Speculative evaluation may contribute additional hidden costs as well. For instance,
even when processing elements are available, the memory and communications demands
of speculative tasks may degrade the performance of mandatory tasks through increased
contention.
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The key to an effective speculative evaluation strategy is to shift most of the burden
of speculation to the processors that would otherwise be idle. By reducing the impact
of speculation on mandatory tasks, speculative evaluation can be used to improve the
performance of some programs without significantly degrading the performance of others.

2 Concepts

A simple scheduling policy is inadequate for speculative graph reduction. Speculative
tasks may perform unnecessary computations, and the program may terminate with a
number of speculative tasks outstanding. Clearly, speculative tasks should only be con-
sidered for execution when no mandatory tasks are available [1]. Therefore, a speculative
graph reduction system must provide prioritized, preemptive task scheduling to ensure
that mandatory tasks are not deferred while some processors are engaged in speculative
computations. Furthermore, some speculative tasks are more likely to become useful than
others. Any reasonable scheduling strategy for speculative tasks must favor the tasks that
are most likely to become useful. Therefore, a range of speculative priorities are necessary,
with the highest priorities assigned to the most promising tasks.

Because of the constraints on task granularity, a single task is typically responsible for
the reduction of several nodes in the program graph. Each node may be shared among
a different set of tasks, so the priority of a speculative task may require adjustment each
time it enters or leaves a node. However, an enormous amount of bookkeeping is involved
in a priority system that keeps detailed accounts of sharing [5].

To avoid the overhead of such detailed bookkeeping, we adopt a lazy approach to
priority adjustment. Whenever a task enters an updatable node, it locks the node, so
that other tasks that try to enter the node will block until the result is available. If a
task blocks on a node locked by a lower priority task, the priority of the running task is
raised to that of the blocking task. Whenever a task completes the evaluation of a node
on which equal priority tasks are blocked, it recalculates its priority as the maximum of
its initial priority and the priorities of any tasks that are blocked on other nodes it still
has locked.

With this approach, sharing is not considered relevant until another task actually
demands the shared result. Consequently, very little overhead is required for dynamic
priority adjustments. Although this approach does not ensure the optimal assignment of
priorities to speculative tasks, it does guarantee that a task will never be blocked on a
lower priority task.

Some form of speculative task throttling is necessary to avoid swamping the system
with speculative tasks. However, the throttling mechanism must ensure that crucial par-
allelism will not be lost when a speculative computation becomes necessary. In particular,
should a speculative task spawn a child task of equal priority, the scheduler must upgrade
the child if its parent becomes necessary.

When a node is evaluated conservatively, the result is written back into the program
graph, overwriting-and destroying-the graph for the original expression. With spec-
ulation, however, the standard update mechanism can result in unbounded growth of
the program graph. Unless the speculative results become completely unreachable, they
cannot be reclaimed by standard garbage collection techniques. Partridge suggests that
a possible solution to this problem is to revert evaluated parts of the program graph to
their unevaluated form if they are not yet necessary and if they occupy less space as
unevaluated expressions [51.
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Update reversion requires a special speculative update mechanism that does not de-
stroy the original graph. When a speculative task completes a computation, it overwrites
the original node with a deferred update node that contains pointers to both the unevalu-
ated expression and the result. When a speculative task enters a deferred update node, it
just follows the pointer to the result. However, when a mandatory task enters a deferred
update node, it performs the update and then follows the pointer to the result. If mem-
ory is exhausted, the garbage collector can free additional space by reverting some of the
deferred updates to their unevaluated form.

3 Implementation

A prototype implementation containing these and other ideas has been developed for the
BBN TC2000 "butterfly". It is based on the Spineless Tagless G-Machine model of graph
reduction [4]. Few modifications to the STG-Machine are necessary to support speculative
evaluation [3].

Conservative task synchronization is handled with the aid of special "black hole"
nodes. When a task enters a updatable node, it locks the node by replacing it with a
black hole. Any task that enters a black hole is suspended and added to the black hole's
blocking queue. When a black hole is updated, any tasks that were blocked on the black
hole are resumed.

If a speculative task enters an updatable node, the system must be prepared to restore
the original node should the speculative task be terminated prematurely. Therefore, when
"a speculative task enters an updatable node, it replaces it with a revertible black hole, or
"a "grey hole.". A grey hole contains not only a pointer back to the original expression, but
also a task identifier and the speculative task's stack depth when it entered the node. The
latter two items are used to temporarily increase the scheduling priority of the speculative
task should a task with a higher scheduling priority block on the grey hole. When a grey
hole is updated, any blocked tasks are resumed, and the updating task downgrades its
own priority if appropriate.

Each speculative task has two priorities: a base priority and a working priority. The
base priority is assigned when the speculative task is created, and only changes if the root
of the speculative task is demanded by a higher priority task. The working priority is
used for scheduling, and may change as other tasks block on nodes that are locked by the
speculative task. Whenever a mandatory task blocks on a node that a speculative task
has locked, the speculative task is upgraded to mandatory. If the shared node is also the
root node for the speculative task, the base priority of the speculative task is changed to
mandatory as well. However, if the shared node is nested deeper within the speculative
computation, the task is only temporarily upgraded until it completes the evaluation of
the shared node. If multiple mandatory tasks block on different nodes that are locked by
the same speculative task, the speculative task is temporarily upgraded until the topmost
node is evaluated.

The stack depths that are recorded in the grey holes are used for quick identification
of the topmost node at which a mandatory task is blocked. An upgraded speculative task
records the stack depth of the topmost grey hole on which a mandatory task is blocked,
to reduce the overhead required for determining when to downgrade the task back to a
speculative priority.

Whenever a speculative task blocks on a lower priority speculative task, it raises the
priority of the other task to match its own. A speculative task may block several other
speculative tasks of varying priorities and at varying depths in its computation, so the
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Table 1: Speculative and Prescient Speedups (wrt Conservative)

2 PEs 4 PEs 8 PEs 16 PEs 32 PEs

Benchmark Sp Pr Sp Pr Sp Pr Sp Pr* Sp Pr
pqueens 0.94 1.1 0.98 0.97 0.98 1.0 1.1 1.3 1.1 1.2

primes 1.5 1.9 2.6 3.6 3.7 6.8 4.7 11.5 3.9 15.9
sieve 0.95 0.95 0.70 0.69 0.73 0.71 0.77 0.74 0.87 0.85

tautology 1.7 1.8 2.7 2.8 4.2 3.9 4.3 3.8 3.4 3.0

sshallowest-stack-depth solution used for mandatory upgrades is inadequate for handling
nested priority changes. To guarantee that the priority of a speculative task is always
the maximum of its own base priority and the priorities of any blocked speculative tasks,
a speculative task must be able to recognize when it has awakened the highest priority
blocked task and adjust its own priority accordingly. Therefore, each time a speculative
task updates a grey hole and awakens a task of the same priority, it walks up its own
stack to determine the highest priority of any speculative tasks that are still blocked on
one of its grey holes. Although this operation is expensive, only speculative tasks incur
the additional overhead, so conservative reduction does not suffer.

We have tested the prototype implementation on a small set of benchmarks, and the
initial results are promising. For each of the benchmarks, we devised a corresponding
"prescient" program that uses conservative parallelism to evaluate only those tasks that
are necessary for program completion and to evaluate all necessary tasks as soon as possi-
ble. The prescient program achieves idealized speculative evaluation: perfect prediction of
the program's future needs and early execution of necessary tasks with minimal overhead.

References
[(1 F. Warren Burton. "Speculative computation, parallelism, and functional program-

ming," IEEE Transactions on Computers, C-34(12):1190-1193, December 1985.

[2] Paul Hudak. "Distributed task and memory management," Second Annual ACM
Symposium on Principles of Distributed Computing, pp. 277-289, Montreal, Quebec,
Canada, 17-19 August 1983, ACM Press.

[3] James S. Mattson Jr. An Effective Speculative Evaluation Technique for Parallel Su-
percombinator Graph Reduction, PhD thesis, Department of Computer Science and
Engineering, University of California, San Diego, February 1993.

[4] Simon L. Peyton Jones. "Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine," Journal of Functional Programming, 2(2):127-202,

April 1992.

[51 Andrew S. Partridge. Speculative Evaluation in Parallel Implementations of Lazy
Functional Languages, PhD thesis, Department of Computer Science, University of
Tasmania, October 1991.



Parallel Architectures and Compilation Techniques (A-50)
M. Cosnard, G.R. Gao and G.M. Silberman (Editors)
Elsevier Science B.V. (North-Holland) 335
@ 1994 IFIP. All rights reserved.

Toward a General-Purpose Multi-Stream System1

Avi Mendelsona and Bilha Mendelsonb

aDept, of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000,

Israel. mendlson~ee.technion.ac.il

bIBM Israel - Science and Technology, MATAM - Advanced Technology Center, Haifa

31905, Israel. bilha~vnet.ibm.com

Abstract: This paper presents a new approach for a general purpose multi-stream sys-
tem. The system is designed to support parallel execution of different processes/threads.
We achieve this goal by using a unique hardware architecture that supports the use of our
new "semi-dynamic" stream scheduling. The architectural principles presented here can
be applied to both VLIW and supper-scalar systems. The system can support synchro-
nization primitives, dynamic interleaves of execution streams and other operating system
operations. Simulations indicate that the system can utilize a large number of execution
streams with relatively small overhead.

KEYWORDS: VLIW, Super-scalar, Multi-stream, Thread

1 Introduction

Modern computer architectures can integrate several functional units in the same system.
Future computer architectures will be able to integrate a large number of such units.
However, The utilization of such systems is limited by the capability of the programmer
to write "massively parallel" programs (coarse grain parallelism) and by the capability of
the compiler/hardware to exploit the instruction level parallelism (ILP) that can be found
in each instruction stream. The multi-stream approach advocates using both techniques
in order to take full advantage of such systems. The XIMD [31 machine offers to extend the
VLIW approach. Different threads and their related ILP are scheduled at compile time
(assuming some run time support), thus, streams cannot dynamically interleaves at run
time. A different approach [1] calls to extend the super-scalar approach by forming a global
scoreboard that can manage different streams concurrently. Streams here can dynamically
be interleaved, but the implementation may require very complicated hardware.

The capability for dynamic scheduling of execution streams is very important for
supporting a multi-threaded and multi-processing environment. Recently, different re-
searchers report that the ILP degree of programs changes from one program to another,
and in many cases the degree of parallelism changes from one execution phase to another
[2].

'Supported in part by Ollendorff foundation.
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This paper presents a "semi-dynamic" execution scheduling. Each stream is broken
into Execution Blocks (EB), and the system can support parallel execution of different
execution streams. The system allocates a fixed set of resources for each EB for its entire
execution, but can dynamically change the allocation at the beginning of each ED.

In order to support the semi-dynamic scheduling approach, a new hardware compo-
nent, termed coordinator is introduced. The coordinator aims at allocating the resources
to the different execution streams, but may also be used for implementing synchronization
primitives and other operating system activities.

2 Compile time support

We assume that the programmer uses threads to indicate the streams that can be executed
in parallel. The compiler divides each thread (or process) into EBs (presently, this process
is performed manually but we are looking for heuristics for optimal partitioning). Each
ED ends with a call to another ED (e.g., if it needs a system call), swaps (replaces its
execution with another EB) or waits for synchronization. The call directive supports
parameter passing as well as serves as an indication of the return EB. Synchronization
is handled by the system coordinator which manipulates synchronization conditions and
activate streams as needed.

Fine-grain parallelism is provided by static scheduling of each EB according to the
amount of resources and/or the maximal parallelism that can be extracted for it. Global
scheduling techniques such as software pipelining, trace scheduling or global instruction
scheduling can be applied to each ED with no restrictions.

The compiler attaches a header to each ER that indicates the resources it needs. The
header contains the type and quantity of the resources. The process uses a process header
which indicates the EBs that have to be invoked when the process is initiated.

3 The Hardware Model

Figure 1 shows the general structure of the proposed architecture. Two main features
distinguishes our new approach from other multi-stream architectures: (1) the sequencer
in our model controls only the resources which were attached to the current EB, and
(2) a new hardware component, termed a system coordinator, is introduced. The system
coordinator interleaves the execution of the different EBs, attaches the required resources
to an ED for its entire activity, and supports different synchronization primitives. The
execution of each EB is independent. Thus, a delay in executing one EB will nc. have
any direct effect on the performance of others.

The system presented in Figure 1 is designed to support M concurrent execution
EBs. The hardware is composed of N functional units (FU) combined into an FU-file, M
sequencers, coordinator units and a register file.

Each sequencer can access all the resources attached to it. All the sequencers can be
operated in parallel since the FU-file is multi-ported and each functional unit can access
any register. Conflicts of access to registers are prevented by allocating a different set of
registers to each sequencer. Note that only the coordinator can allocate resources.

The sequencer in our system is similar to the one used in the "traditional" VLIW
or the score-board in a super-scalar architecture. To support the dynamic nature of our
system, logical resource numbers are used. At compile time, the compiler determines
how many resources should be allocated to each stream. It schedules the instructions
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multi-port functional units file

Register file

Figure 1: The proposed multi-stream architecture

according to this assignment and uses logical numbers for the allocated resources. At run
time, the coordinator allocates the resources needed, and provides the physical numbers
to the sequencer before the execution of the EB starts. The sequencer holds a set of
mapping registers for accessing the right resources.

The system coordinator is also used for implementing different synchronization primi-
tives and other "basic operating system operations" which are vital for correct operation
of multi-threaded environments.

4 Run time support

During run time, the system coordinator controls the activities of the entire system. The
execution of an application starts by sending the process header to the system coordinator.
The system coordinator puts the EBs listed in the process header into the ready stream
pool It finds EBs that are in the ready stream pool which can best utilize the machine
and sends them to the sequencers for execution. The coordinator guarantees that the EB
will not be interrupted during its execution.

When an EB is completed, it releases all of its resources and the coordinator schedule
another EB for execution. The current EB is inserted into the ready stream pool or
into the waiting queue (if synchronization is required). Note that the system coordinator
cannot schedule an EB for execution unless it can allocate the resources it needs. The
type and quantity of resources the EB requests axe used for that purpose. When it finds a
proper candidate from the ready stream pool, it removes the EB from the pool, allocates
the resources for the EB, and sends their physical identification to the sequencer. The
sequencer maps the logical resource identifications used by the compiler to the physical
resources.

5 Supporting Operating System Operations

The system we are presenting can efficiently support a multi-process environment where
each process has its own address space. The process can be divided into threads which
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are operated in parallel and share the same address space.
The system supports basic synchronization primitives such as semaphores, barriers

and communication among the different EBs. When an EB terminates its operation it
provides an indication to the coordinator why it was terminated. If the EB indicates
that it needs a synchronization event or any other system service the coordinator will not
re-schedule it before this condition was fulfilled. This way we can ask the coordinator to
perform some of the "traditional" OS operations such as I/0, or the coordinator can be
used to communicate with some other host that will perform these operations.

6 Summary and Conclusions

Current VLSI technology can offer a larger number of functional units. Unfortunately,
the software cannot efficiently utilize them. To overcome this disadvantage, this paper
outlined the basic characteristics of a new multi-stream machine. The system is capable
of supporting fine-grain parallelism found in the streams, and coarse grain parallelism
as directed by the use of threads. The threads are broken into EBs, and each EB may
need different number of resources for its execution. The system dynamically exchanges
execution of EBs so that it can achieve better machine utilization. The use of a multi-
stream architecture with dynamic streams exchange reduces the effect of execution stall on
the stream being executed. It allows the integration of asynchronous system operations,
such as handling I/O devices together with execution of CPU intensive applications.

Currently we are looking on different tradeoffs in designing such a system. We are
considering reducing the complexity of the register file and the functional units by limiting
the number of resources each sequencer is connected to. We are looking at the effect of
different scheduling mechanisms on the utilization of the system and optimal ways to
break the execution stream of the thread into EBs.
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1 Introduction

Many program constructs are considered difficult to optimize because they are random.
For example, the irregular behaviour of an if statement in the middle of a loop hinders
optimization.

The underlying idea of this paper is that there is nothing random about program
behaviour. It is true that randomness can often be observed, for example in a profile.
However, by focusing attention on what is essential in a measurement a hidden meaning
can be made to emerge from the apparent randomness.

Optimization by compilers is often based on the abstract representation of the pro-
gram. Using an information theoretic characterization of behaviour, we derive laws about
programs that cannot be inferred from the representation alone. Optimization in hard-
ware has concentrated on ad hoc improvement of behaviour. A scientific characterization
improves understanding of why a technique performs better than another.

Figure 1 shows a loop in a program and the corresponding control flow graph (CFG).
Nodes such as D are special because the value (true/false) of their condition can affect
subsequent control flow.

A i=O
a

i=O; B f (i

do f b

f W;C i++

i++; C

} while (i<4); D i<4 yes

E ..

Figure 1: An example of loop and its CFG

Control flow is just the sequence of nodes in the order of their execution. A program
trace is the control flow of the nodes that are executed. Note that only conditional
nodes are significant in the trace. Control flow can also be represented by the sequence
of transitions. James Larus has shown that this is a better representation of control

'Franco Gasperoni participated in this. It came out of a talk in his office and we pursue it together.
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flow and that the dominator tree can be used to minimize the number of transitions
recorded [Lar93].

Larus makes a side remark concerning a technique credited to Christopher Fraser in
which control flow is represented simply by a string of bits. Transitions at a condition
node are represented by a single bit: I if the condition is true, 0 otherwise. The CFG is
used to determine the node following a condition, depending on the previous history of
the trace.

The second idea, which we call the "Compress Hypothesis", is that the entropy (infor-
mation content) of Fraser's trace can be used as an indicator of the branch predictability
(regularity or randomness) of a program. Note that use of Fraser's trace is essential as
it is a minimal representation of control flow. A node trace, for example, contains nodes
other than conditional nodes that are redundant. The encoding of transitions in Larus's
trace also introduces redundancy. In these two cases, the redundancy due to the encoding
afects entropy and interferes with redundancy due to program behaviour.

In order to validate the "Compress Hypothesis", we decided to first use a data com-
pression program such as COMPRESS or GZIP on Fraser traces of the SPEC benchmarks
and compare the compression ratios that result. These programs certainly do not give
the best indicators of predictability possible but they provide a good starting point and
are easy to put in practice. In order to collect the branch history of a program, we wrote
a very simple preprocessor, which is invoked to source compilation. It takes a C source
as input and modifies it so that a Fraser trace is saved in a file at run-time. No special
compiler or run-time environment is necessary.

The idea is to find the control flow statements (if, for, while, do while) in the
source, and incorporate function calls so that the result of the condition is recorded.

2 Different kinds of trace
Various behaviour representations of the C loop of figure 1 - the node trace, transition
trace and Fraser's trace - are shown in Figure 2. The node and the transition traces
contain redundant information: node C always follows node B in the node trace, and
transition c always follows transition b in the transition trace. A Fraser trace eliminates
redundancy as it focuses on changes in the control flow.

nodes ABCDBCDBCDBCDE
transitions abcdbcdbcdbce
Fraser 11 10

Figure 2: Different kinds of trace

Larus's dominator technique for eliminating redundancies from a transition trace still
contains redundancies due to the node number encoding.

A Fraser trace cam be conveniently represented as a vector b, bi designating the ith bit
in the trace. The portion of Fraser trace of length n and ending at time T can then be
expressed by the sequence bTr-+ 1bT-n+2 ... bh.
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3 Entropy

The "Compress Hypothesis" depends on the notion of information content (entropy).
Shannon first introduced the notion of entropy in [Sha48]. He considers a source as
producing n different symbols Sic{(..,, with respective probablities of occurence pi(...).
He then defines entropy as

The higher the entropy, the more the randomness.
Huffman uses Shannon's occurence probability model in his compression algorithm.

It is optimum for memoryless sources. This means that the occurence probabilities are
neither intercorrelated or selfcorrelated, i.e.

P., = pipj

where pij is the probability that the source produces the sequence SS,. Real sources
seldom act this way. For example in an English text the three letter sequence "T H E" is
more probable than any other.

Many other compression algorithms have been described. LZW is one of the most well
known. This algorithm can efficiently deal with combination of symbols, or words. The
program GZIP implements another algorithm, LZ77, which usually performs better than
LZW. There is no simple mathematical expression of the notion of entropy defined by an
algorithm such as LZW. The algorithm itself is the simplest definition and the size of the
output defines the information content of the input.

4 Signatures

We call a signature of length n at time T of an execution, the substring bT-n+,bTR-+2 ... bT
of a Fraser trace. Signatures correspond to the contents of a window of length n sliding
through the trace.

Signatures are a program-oriented indicator of predictability. The number of different
signatures in an execution gives information about program randomness: the higher the
number, the less predictable the program.

Signatures on their own are not the best indicator of predictability. Consider for
example the four bit signature 0001, corresponding to an execution of a four-branch loop
(three forward branches in the loop not taken, a backward branch executed to the top of
the loop). The repeated execution of this pattern gives rise to four different signatures
(0001, 0010, 0100, 1000), each corresponding to different phases of the loop. It is possible
to normalize the signature by rotating until appearance of the smallest configuration
possible (0001).

A second flaw is that the signature is weighted identically, regardless of how often it
occurs. For example the loop pattern, 0001, receives the same weight as a pattern that
occurs only once. It is a good idea to encode the signatures using Huffman's algorithm.
This ponderates signature probabilities and limits noise.

5 Results
In these experiments the number of different signatures of length n encountered in a rahge
bob1 ... bL-. was measured. Results for n = 32, and L = 1,000,000 are shown in the first
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table. The column "random" gives the number of signatures of a randomly generated
binary string. Note how different the program figures are compared to the random case.
It is clear that a signature is an indicator of control flow behaviour.

L 1random espres i qt
I rando I spresso () I U I eqntott 1 100,000 11 9096 4,514 71 00 2,0 6

[ 5o,96 ] s2,576 I 9.. I 6,79 ) 1,000,000 1 999,966 5,76 9,91 1 6,793
10,000,000 .135,680 117,391 14,060

signatures for n = 32 and L = 1.000, 000
signature for L varying (n = 32)

Sesp-eso (a) Ili e.ntott 0 espeo (a) eioott

32 52,576 19,991 6ý,793 0 64,337 i4_14,01 1.0
48 116,114 16,856 3 302,296 1,000,000 52,576 9,991 1,793

signatu-es for n varying (L = 1,000,000) signatures for 0 varying (n = 32 and L = 1,000,000)

1 espresso (a) li eqntott espresso a [ i eqtott

non-norm. 52,576 9,991 6,9 signat res 135,680 17,391 1 4,0
norm. 23,523 1 2421 code lengh 11 7.78 1 10.74 9 9.73

effect of normalisation Huffman's code length

Table 1: Results

We next change the signature length, n, and the sample size, L. Results are shown in
the next two tables. Again, signatures are seen to be a good characterization of program
behaviour. Their number only grows by 3, not by 10, when L is multiplied by 10 (as
opposed to the random case). Similarly, if the signature size is increased by 16 bits, the
number is only multiplied by 3.

It is now possible to make these measurements clearer. Firstly, we have eliminated
"startup noise.". The method chosen was to eliminate the first 1,000,000 branches '0 =
1,000,000) in the experiments reported. The fourth table shows that the nun .er of
signatures with noise (0 = 0) is significantly higher.

The fifth table shows that normalization allows to divide the number of signatures
by a factor of 2-3. Unnormalized ponderated signatures using Huffman's algorithm are
shown in the final table. It is very significant that the signatures of ESPRESSO are encoded
with less bits (7.78) than those of LI (10.74), even though ESPRESSO had 8 times more
signatures. ESPRESSO is hence more predictable.
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Abstract: A new algorithm, the phase method, is described in this report. The phase
method is a loop transformation based on unimodular transformation theory. The phase
method is not limited to perfectly nested loops.
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1 Introduction and Background

The main result presented in this paper is a new algorithm, the phase method. It is closely
allied to other unimodular transformation algorithms such as Banerjee's [21 except for the
important distinction that it accepts imperfectly nested loops. This result is significant for
two reasons. Although other techniques exist to convert imperfect loop nests into perfect
loop nests - loop distribution being the most notable - they cannot always be applied or
it may be undesirable to apply them. Secondly, some researchers are proposing alternative
frameworks because unimodular transformations are limited to perfectly nested loops[3].

We begin by letting S, P, and E represent any sequence of non-loop statements.
Figure 1(a) represents perfectly nested loops and Figure 1(b) shows the class of loops we
parallelize. We call P the leading statements and E the trailing statements. Banerjee
defines index point, iteration space, data dependences, and dependence graph in [2]. We
use those concepts here except we expand the iteration space to include leading and
trailing statements.

We use the algorithm for fine-grain parallelism Banerjee presents in [2]. The algorithm
produces new loop bounds - mn, M, and m20, M20 - and a unimodular transformation
matrix, U. We frequently refer to the skew (u, 2 component of U) as p.

2 Algorithm

The most important feature of the phase method is that it determines when to execute the
leading and trailing statements at compile time. If unmodified, the dependence analyzer
does not consider our expanded iteration space. We can extract the data dependences by
directly augmenting the input to the constraint solver within the dependence analyzer,
as Wolf does in [5]. The two additional constraints are: P executes when i2 = n2 (ii) and
E executes when i2 = N2(ij). This means that all dependence vectors have length two.
Thus, all dependences can be represented in the form shown in Figure 1(c).
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DO il = n1 ,N, Q
DO ii = ni, N, P[ii]

DO i2 = n2,N 2  DO i2 = n2,N2 1
E[iDi2] END

L~iui
END END(a) (b) u

(c)

Figure 1: perfect and imperfect loop nests; expanded iteration space.

Next, we invoke the fine-grain parallelism algorithm. Although the algorithm was
meant for perfectly nested loops, the dependence information that we are passing includes
the leading and trailing statements' dependences. The remaining task is to generate code,
but first the algorithm takes into account that the index points in the iteration space
are not necessarily the same sequence of statements. The phase method does this by
recognizing that the "wave" (the outer loop of the transformed code) travels through the
iteration space in phases. For a doubly-nested loop there are three phases. The first phase
may be vacuous or both leading and body statements are executed. The middle phase
has three exclusive possibilities: only body statements are executed; leading, trailing, and
body statements are executed; or it is vacuous. The third phase is similar to the first. The
same wave on the three different iteration spaces shown below, for each case the middle
phase is different.

00

Since the angle of the wave depends on the amount of skewing, it may be the case that
in a given phase there may be more waves than leading or trailing statements. That is,
the previous examples do not illustrate that the leading statements may only be executed
once every n waves during the first two phases.

We identify the phases for a particular iteration space with the variable s. When s
is negative, it indicates that the leading, trailing, and body statements are part of the
middle phase. When s is positive, the middle phase has only body statements. The
number of waves in the middle phase is 1sI. To determine s, we find the last wave to
execute a leading statement (A) and the total number of waves (Wtot). After we find s,
we determine the number of waves in the first and third phases:

A = II=ju12 j(Ni - ni) waves that may execute P or E
Wtot=IuIII(NI -n 1 )+ u121(N2 -n2)+1 total number of waves

s=wtot - 21ut21(NI - ni) characterizes the middle phase
a w=min{A, A + s} number of waves in the first/last phases
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DO W = mI + Q2 ,m +0 2 +181-1
IF HOD(Mi - Wu).p - I THEN

EU[W, M2(W) + 1)
END
PAR DO X = M2(W), M2(W)

SU[W, X]
P[n -1] nN 1O w = mi + o 2 + II,Mi
DO W = r 1 ,m 1 +02 -1 IF MOD(H+I,U,),.M-1 THEN IF HDD(Mi - W,p)Wp - 1 THEN

PAR DO X = Mr(W), M2(W) PUJw + 1tt2(W + 1) - 13 EUIW, M 2(W) + 11
SU [W,X END END

END END DO PAR DO X = M2(W), M2 (W)
IF MOD(W+I,)-Mp-1 THEN SU[W,X]
PUI[W + lr(W + 1) - 1] (b) END

END END DO
END DO EU [N1 , N2 + 1]

(a) r W = mI + o 2 ,ml + o + II-1 (d)

PAR DO X = M 2 (W), M 2 (W)

SU[W,Xl
END

END DO

(c)

Figure 2: three phases are selected from these templates.

Code generation is simply a matter of generating code for each of the three phases.
Several small improvements can be made when generating the phases; we show the sim-
plest one here. For more details, see [4]. The first phase is shown in Figure 2(a). When
generating code for the middle phase, s determines the code. If s is zero, then nothing is
generated. If s < 0 then the code of Figure 2(b) is generated. If s > 0 then the code of
Figure 2(c) is generated. The last phase is shown in Figure 2(d).

3 Example

Below, an example is listed with line numbers and dependence information:

code

5 DO I = 3,10 Dependence Information
6 C(I) = 1/(A(1-3,1)*A(1-3,1)-I)
7 COLSUM(I) = 0 flow 6:C(I) -+ 9:C(I) (0,1)
8 DO J = 1,10 flow 7:COLSUM(I) - 9:COLSUM(I) (0,1)

9 A(I,J) - C(I)*X(I,J) outp 10:COLSUM(I) -- 7:COLSUM(I) (0,1)

10 COLSUI(I) = COLSUM(I)+A(I,J) flow 9:A(I,J) -+ 6:A(I-3,J) (3,0)
8 END DO flow 1O:COLSUN(I) -+ 10:COLSUM(I) (0,1)
5 END DO

Passing the vector set {(0, 1), (3, 0)) and the loop bounds to Banerjee's algorithm [2] results

in the following transformation matrix, U = ( ) and new loop bounds, mI..M1

4..20 and m 2(X)..M 2 (x) = [max{3,x - 10}1..Lmin{10,x - 1}j. Next we calculate the
number of waves in each phase (s, a, and w) based on the equations given earlier.

s= 17 - 2(l)(10 - 3) = 3 0a2 = min{7, 10} = 7 w2 = min{7, 10} = 7
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Using the templates from Figure 2(a,c,d) and the improvements from [41, we get the
resulting code.

C(3) - 1/(A(0,1)*A(0,1)-I) Enter phase 1 ...
COLSUM(3) =0
DO W-4,10

PAR DO X=MAX(3,W-IO),MIN(1O,W-1)
A(X.WX-c(X) *X(X,W-X)
COLSUM (X) =COLSUM (X) +A(X, W-X)

END DO
C(MAX(3,W-9)-1)=1/(A( (MAX(3,W-9)-1) -3,1)*A( (MAX(3,W-9)-1) -3,1)-1)

END DO
DO W1l1,20 Phase 2 and Phase 3 merged...

PAR DO X=MAX(3,W-1O),HIN(1O,W-1)
A(X,W-X)=C(X)*X(XW-X)
COLSUM(X)=COLSUM (X) +A (X,W-X)

END DO
END DO

4 Comparisons and Conclusion

Little has been written about imperfect loop nests. Loop distribution is usually success-
ful but it fails when a strongly connected component of the dependence graph is still
imperfect. In [1], Abu-Sufah describes a simple technique that is easy to apply and al-
most always legal, but performs poorly during execution. M.J. Wolfe provides complex
conditions to permute imperfect loop nests in (61. M.E. Wolf [53 discusses unimodular
transformations on imperfect loop nests but suggests that his method is only practical for
loop skewing. A more detailed comparison is in [4].

In this paper we argued that unimodular transformations are not fundamentally lim-
ited to perfect loop nests. We extended the notation of an iteration space to include
imperfectly nested loops and presented a unimodular transformation algorithm that gen-
erates parallel code for imperfectly nested loops of depth two.
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1 Introduction

In Data-Flow systems, data values rather than being stored at particular addresses, are
tagged. The tag includes the address of the instruction for which the particular data value
is destined, and other information defining the computational context in which that value
is used. This context is called the value's colour. The data value, together with its tag,
is called a token. By considering the creation of a token as a single unit of "work", an
effective metric for "work" can be derived. For example, where a proliferate instruction
counts as only one instruction it may create many tokens. To count instructions only
would obscure the actual work performed by the system. The number of Created Tokens
is, therefore, our measure of work.

For complete details of these architectures, the reader is referred to the literature
[2, 3, 4] and for a longer version of this paper to [5]. The remainder of this paper contains
"a summary of the experimental framework, justifying Created Tokens as a metric, and
"a summary of the results obtained from experiments performed using simulators for the
various machines.

2 Experimental Framework
The difficulty in comparing systems, as distinct as the MDFM, SDFA and CSIRAC 11
machines, arises from the need to measure something in common to all systems that
represents the amount of work done by each systems. Instruction count is inappropriate
since the complexity of the MDFM's and the CSIRAC Il's instruction-sets far exceeds
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that of the SDFA system. Operation count is ruled out as defining what constitutes an
operation can be rather difficult, and the use of cycle count assumes that the architecture
is independent of technology, clearly a falsehood. Likewise, using execution time is out of
the question.

Since all data values in these systems are carried on tokens, the number of tokens
generated by all components of the system is taken as a measure of the total work. The
creation of a token, as an abstraction of work done by a Data-Flow system, is quite
natural, and it is straight forward to identify where a token is created or copied within a
Data-Flow system. Notice that this metric includes tokens generated by the MDFM and
the CSIRAC II's structure memories as well as by their processing elements. The SDFA
system has no structure memories.

Two assumptions underlie the experiments discussed below. First, the CSIRAC II has
the ability to transmit multiple values, such as vectors, as a single "token" in the form of
a multiple word network packet. For comparison purposes, each such CSIRAC II network
word (containing two values) is counted as containing two tokens. Second, the structure
memory garbage collection in the CSIRAC II and MDFM is not included in the metric.
There are no such overheads for the SDFA or CSIRAC II when using transmitted data
structures.

Four benchmark programs were used in this study: Gaussian Elimination (GE), Matrix
Multiply (MM), the N-Queens on an N by N Chess Board (NQ), and the Shallow Water
Wave Equation (SW). The codes are all available in SISAL from the authors by e-mail
and listings can be found in [4].

For the MDFM and CSIRAC II, compiler options were varied individually for each
program to achieve the best possible performance, and the SDFA codes were written in a
macro assembler, as a compiler is not yet available. For further details and a justification
of the "fairness" of these comparisons, see [5].

3 Results

Two comparative experiments were conducted on the three systems. The first compares
the total work performed, and the second examines the locality in the three systems.

Total Work: Table I contains the results of this experiment'. It is clear that
the "stateless" computational model (as in SDFA and transmitted structures versions
of CSIRAC II codes) carries with it two specialized costs. First, there is the potential
that additional copies of data structures might be required that are not required in state
based solutions. Second, since "stateless" data structures are passed in their entirety
through function boundaries, rather than just the pointers, re-colouring of data structure
elements can prove costly.

Because two dimensional arrays are not first class constructs in SISAL', there is a
penalty for the MDFM and CSIRAC II (in GE & SW). The CSIRAC II suffers from
this penalty more than the MDFM (in GE) due to the absence of low level optimizations
available on the MDFM.

In NQ, the rapid growth in computational load with board size results in a sudden
increase in the number of tokens created. Because of this exponential growth, a small
difference in the number of tokens created in the multiply recursive function causes a

'The value- ,'-r NQ(8) on SDFA and CSIRAC and GE(40 & 48) on SDFA are extrapolations.
2They are represented as an array of pointers to one dimensional arrays.
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Benchmark [CSIRAC MDFM] SDFA

GE (16) 53 48 41
GE (24) 235 133 131
GE (32) 538 344 302
GE (40) 1030 637 580
GE (48) 1757 1063 992
MM (16) 39 38 38
MM (24) 119 112 120
MM (32) 268 247 274
MM (40) 507 462 522
MM (48) 911 775 887
NQ (4) 11 10 18[NQ (5) 49 42 83
NQ (6) 228 187 400
NQ 7) 1042 823 1833
NQ (8) 4686 3945 8575
SW (4) 102 110 27
SW (8) 315 299 104
SW (12) 639 580 233
SW (16) 1076 952 412
SW (20) 1627 1415 643

Table 1: Tokens Created (in thousands of tokens).

substantial difference in the final token count. This accounts for the failure of the SDFA
system to track the other two as closely as it does for the other benchmarks.

Locality: One of the fundamental motivations behind both the SDFA and CSIRAC
II architectures was to benefit from the distributed memory model. This experiment
compares the amount of work performed locally for each of the three machines. The
important part of the global token traffic is that which travels to and from the structure
memories, because it is this that will always be global, regardless of what locality facilities
are incorporated in the processor.

The results obtained from this experiment are presented in table 2. The percentages
represent the fraction of all Created Tokens which are transmitted across the netwo k
(i.e. the percentage of non-local token traffic) and the fraction of all Created Tokens
which were transmitted to or from the structure memories. These are the tokens that
must be transmitted across the network, due to the implied shared memory model of
stored data structures.

Benchmark CSIRAC CSIRAC IMDFM MDFM I SDFA

I Global Memory Global Memory Global
GE (48) 52 52 91 31 13
MM (48) 25 0 86 4 6
NQ (7) 4 0 69 4 6
SW (20) 44 44 82 33 4

Table 2: Percent of all tokens transmitted globally and to or from structure memories.

It is acknowledged that the global traffic in the MDFM is a worst case, due to the
distribution function and basic architecture. The structure memory traffic, on the other
hand, represents a best case since it assumes that all non structure memory traffic is local.

..........
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4 Conclusions

First, it is possible to compare experimental systems with diverse architectures using a
meaningful, simple metric which is not rendered useless by the experimental nature of the
systems.

Second, although mainstream Data-Flow computing assumes the existence of a special-
ized structure memory, the provision of such is not a requirement. The stateless operation
of the systems above did not cause substantial reductions in performance.

Third, it has been argued recently, see [1], that the increased processor state required to
support latency hiding in the traditional Data-Flow systems will eventually force either
a limit on the scalability of the system (due to increasing latency) or a reduction in
performance (due to the cost context switching). A multiple level memory hierarchy,
which can be exploited through locality in computations, reduces the impact of this
argument. In two of the systems presented here (SDFA and CSIRAC II), a memory
hierarchy exists and the systems employ a variety of techniques to extract locality from
the computation. Although there is a barrier inhibiting the scaling of traditional Data-
Flow systems, there is no fundamental limit.

Lastly, in the context of evolving work on multi-threaded architectures, the tokens
created locally to th, processor may be regarded as being equivalent to register transfers,
thus providing us with the multi-threaded equivalent of Tokens Created. Aggregation of
low level instructions into threads is still not well understood, but what seems clear is that
in practical codes the larger the multi-processor configuration the smaller the aggregations
must be to permit effective load balancing and work distribution. Tokens passing across
the network are equivalent in both cases, and as hardware designers, we know that this
traffic is an essential parameter in sizing the communication network. Unlike Tokens
Created or its multi-threaded equivalent, the more conventional measure of instruction
count is of almost no use in this critical element of multiprocessor design.
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Abstract: The functional language Sisal and its compiler OSC are known to provide programmability and
performance for shared-memory single-address space multiprocessors. However. their performance on dis-
tributed-memory multiprocessors is yet to be investigated. This report presents our on-going efforts of port-
ing Sisal to the 80-processor EM-4 distributed-memory multiprocessor. The key idea of our approach is me-
dium-grain multithreading and simple-minded element-wise data distribution. Explicit-switching based me-
dium-grain threads extracted from Sisal IF2 graph are designed to overlap computation and communication
while the element-wise data distribution strategy simplifies data distribution. A runtime system based on an
n-master-m-slave computation model is currently being developed to execute medium-grain threads. Pre-
liminary execution results indicate that theproposed approach is a feasible way of programming distributed-
memory machines while providing programmability and performance.
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1 Introduction

Functional languages have proven to provide programmability and performance for shared-memory single-
address space multiprocessors. Recent experimental results have indicated that the functional language Sisal
[3] and its Optimizing Sisal Compiler [21 yield performance comparable to that of the best Fortran compiler
on Crays and other shared-memory machines [ 1]. However, little practical results have been reported to date
on distributed-memory multiprocessors. The main difficulties are latency caused by remote memory oper-
ations due to data distribution. It is therefore indispensable to develop a programming model which can
overcome the difficulties of the distributed-memory machines if they can be scaled to 100 or 1000 proces-
sors and to be considered as serious contenders for shared-memory machines. It is precisely the purpose of
this research to solve these difficulties.

Specifically, we are currently porting the functional language Sisal to the EM4 distributed-memory
multiprocessor [4,5]. The key idea of our approach is medium-grain threads which can support a latency
tolerant execution model. We take an optimized IF2 graph [21 which is generated from Sisal and formulate
medium-grain threads. Those medium grain threads are then executed on the EM-4 by a runtime system tai-
lored to the EM-4 multiprocessor. The runtime model that we use for executing medium-grain threads is an
n-master-m-slave (n-m-m-s) model. The n-m-m-s model logically divides all processors into n groups ac-
cording to the network topology. Each group has a master and m slaves. It is these n masters which access
the thread pool for workload distribution. Slave processors access their respective master for obtaining
workload. Section 2 presents our approach to programming distributed-memory multiprocessors, including
thread generator, an element-wise data distribution policy, and an n-master-m-slave runtime model for
workload distribution. Section 3 lists preliminary experimental results and concludes our progress report.
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2 SisaI-EM-4 Environment

Sisal (Streams and Iterations in Single Assignment Language) is a side-effect free functional language [3].
It provides a parallel loop construct which is the main source of parallelism. The Optimizing Sisal Compiler
automatically parallelizes and optimizes various parts of Sisal programs for shared-memory machines. Fig-
ure 1 shows how OSC translates the input Sisal code to machine executable code.

se IF- II F- I2 F- Ce Execuftbe
Prgrm Sia d ot hen Lp Pr ccode

Figure 1: Optimizing Sisal Compiler. IF2mem and IF2Up are array optimizers. "F2Part partitions the data-flow
graph for CGen which generates C code for target machine. Our approach (up arrow) starts from lF2Part.

The key idea of our approach to programming distributed-memory machines is the use of medium-grain
threads. Figure 2 shows our approach to programming the EM-4 using Sisal, starting from IF2Part.

Meolum-gain .MNE

Figure 2: Organization of the Sisal-EM4 environment. C~en is slightly modified for generating threads from
EP2 graph. EM-CC is a C compiler for the EM-4, which needs no modification.

Medium-grain thread generator. Given the partitioned IF2 graph, thread generator generates medi-
um-grain threads and other information for data distribution. Parallel Sisal loops are the main source for
thread formulation. One of the criteria for thread formulation is the estimated computational cost of each
node in the partitioned sF2 graph. The output graph contains nodes, each of which is approximately equal
in estimated computational cost. Since OSC focuses only on parallel loops, the codes other than parallel
loops are not parallelized. Our effort of formulating threads therefore extends to other nodes, beyond paral-
lel loops. Those IF2 nodes with a large loop iterations wiU be split into threads each of which will have
similar computational cost. Those sequential primitive nodes will form a thread whose estimated computa-
tional cost is similar with other threads. The thread formulation method described above has a serious
problem. The estimated cost of nodes in IF2 is based on shared-memory machines and will be much differ-
ent for distributed-memory machines due to data distribution. For this reason, we are currently modifying
the computational cost using the element-wise distribution policy.

Element-wise data distribution policy. Data distribution is central to the performance of distributed-
memory multiprocessors. If data distribution does not match workload distritAon (loop-slice distribution
in our case), the number of remote memory operations will increase, thereby resulting in higher communi-
cation and synchronization overhead. However, we believe that the effects of data distribution to
performance can be reduced by overlapping computation and communication, i.e., multithreading. We
therefore adopt a simple-minded element-wise data distribution for programmability while its inefficiency
resulting from simple distribution will be offset by multithreading. Element-wise data distribution divides
data into n blocks and allocates a block to each processor, where n is a number of processors and a block
consists of consecutive data elements preserving data locality. Table I shows distributing an array of 22 el-
ements to six processors using element-wise consecutive and round-robin methods. Our experimental
results indicated that this simple-minded data distribution strategy can indeed give at least 60% performance
of the best performing algorithms [6].
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Processor number 0 1 2 3 4 ~ 5
Rounid-robin disjtrbtion 1.7,13.19 2.8.14.20 3.9.15.21 4.10.16.22 5.11.17 6.12,18]

Eiement-wiaedistibution 1.2.3.4 5.6.7.8 9.10.11.12 13.14.15.16 17.18.19 20.21.221

Table 1: Distribution of an array of 22-elemet to six processors.

N-master-m-slave runtime model for workload distribution. The current OSC implementation
uses a worker runtime model for shared-memory multiprocessors [2]. We believe that this worker model
will be inefficient for distributed-memory machines because it needs a shared global address location where
every processor checks to see if there is work to do. Furthermore, a software implementation of global mem-
ory on a designated processor will lose 'scalability' which the distributed-memory machines promise to
provide. We therefore adopt an n-master-m-slave runtime model, where there are n masters and m slaves for
each master. By introducing a single level of hierarchy, the model will be able to ease the network conges-
tion and possibly hot spot. Figure 3 shows the 16master-5-slave model for the 80-processor EM-4.

S~Group 0

.......... .. . ...!: i! ... ..

15.0 15.1 ý15.22 151. ] ru 15

Figure 3: The 16-master-5-slave runtime model for 80 procesors. Slaves communicate only to dteir masters.

3 Preliminary Experimental Results and Discussion

We have executed two livermore loops (loop I and loop7) and matrix multiply on the EM-4 based on our
runtime model and data distribution policy. A simplified version of Loop I is shown below.

loopl: for (j=O;j<n;j++) x[j] = q + (yU] * (r * z[j+101 + t * zfj+l 11));
The runtime system is currently being implemented. The results presented in this report are based on hand-
coded C functions. Tables below list preliminary experimental results for the three problems.

Matrix multiply: dimension n 20 40 60 80 100 120 140 160 . 180 200
Exec. time oml ProcessorT, (sec) 0.058 0.461 1.551 3.668 7.155 12.354 19.607 29.254 41,638 57.750

Exec, timeon80ProcsrsTso(sec) 0.016 0.068 0.158 0.251 0.657 0.965 1.339 1.758 13.072 3.838
Speedup = TIjTso 3.6 6.8 9.8 14.6 10.9 12.8 4.6- 16.6

Loopl: Array size n 2000 4000 600D 8000 10000 12000 14000 16000 18000 20000

Exec. time on I Processor T, (sec) 0.104 0.208 0.312 0.416 0.520 0.624 0.728 0.832 0.936 1.040

Exec. time on 80 Procsrs Tso (sec) 0.005 0.007 0.010 0.013 0.015 0.018 0.021 0.023 0.026 0.029

Speedup = TI/Tso 20.8 29.7 31.2 32.0 34.7 34.7 34.7 36.2 36.0 35.9

Loop7: Array size n 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Exec. timeonIProcessorT,(sec) 0.235 0.470 0.706 0.941 1.176 1.411 1.646 1.882 2.117 2.352
Exec. time on 80 Procsrs T80 (sec) 0.007 0.013 0,020 0.026 0.033 0.039 0.046 0.052 0.059 0.065

Speedup = TiflsO 33.6 36.2 35.3 36.2 35.6 36.2 35.8 36.2 35.9 36.2
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Experimental results on matrix multiply are not as promising as expected. The maximum speedup is
slightly over 16 on 80 processors, which is nowhere close to commonly reported linear speedup for matrix
multiply. The results are based on medium-grain threading. Each thread is a single i-loop instance (or n j-
loop instances), where n is matrix dimension. There are several reasons for this modest speedup: First, there
are too many remote reads/thread. Second, there are too few threads. Third, there are litle number of in-
structions in each thread compared to remote reads. For nxn matrix multiply, a processor has n/p threads (in
actual implementation some processors have one more thread than others). Each thread has on the average

2n 2 remote reads and 2n 2 adds and multiplies, ignoring branch related instructions. The ratio of remote reads
to computation is essentially 1, which implies that a remote read must be complete in one instruction cycle
in order to tolerate the latency. Moie discussions are presented in [6].

The two Livermore loops, on the other hand, showed promising results. Their speedup reached over 36-
fold on 80 processors. The main reason is the division of loop instances. We divided n loop instances into
three parts depending on array access: local-access-only (LAO), local-and-remote-access (LARA), and re-
mote-access-only (RAO). LAO part consists of loop instances which access array elements allocated to
local memory. RAO part consists of loop instances which all require remote reads. LARA part has loop in-
stances which need both local and remote reads. For LoopI with n=8000 and 100 elements per processor.
each of the 80 processors executes 100 iterations. The loop is divided into three parts: LAO with iterations
of i--0 to 89, LARA with i=90, and RAO with i--91 to 99. The value 89 of LAO is computed based on the
largest array index 11 of Loop 1. The LARA loop instance (iteration 89) is unrolled and their remote reads
are requested before computation proceeds. This restructuring of LARA part is the key to the high speedup
since those array elements read in the LARA loop instances are reused by RAO instances. Preliminary ex-
perimental results indicate that programming distributed-memory machines using Sisal with multithreading
would indeed provide programmability and performance for general purpose parallel computing.
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program. Measurements of the effects of the strategies on some benchmark programs are
also presented.

Keyword Codes: C.1.2, D.1.3.
Keywords: Multiple data stream architectures (multiprocessors); Concurrent program-
ming.

1 Introduction

This work addresses the problem of efficient resource allocation for synchronization pur-
poses in fine-grain data flow execution models.

Traditionally, a major distinction has been made between static and dynamic data
flow [2], where static and dynamic refers to the allocation of synchronization resources.
Of these, dynamic data flow is best at (.ploiting parallelism. It was, however, early
discovered that unrestricted fine-grain dynamic data flow produces more parallelism than
can be exploited by practical implementations. This extra parallelism does not come for
free as it requires allocation of synchronization resources. The major problem is caused by
reentrant graphs, in which for each invocation, new storage space for each arc and a unique
identifier are required. Static data flow is howeer not always a solution to this problem.
partly because it cannot always provide sufficient parallelism, partly because it is not
possible to express general recursive computations in static data flow. Other solutons
include k-bounded loops [(1 and hardware throttles [4]. The k-bounding technique can
however not be applied to general recursive computations. The hardware throttle of the
Manchester Data-Flow Machine is a more general mechanism, but has the drawback that
it uses a non-local specialized runtime mechanism.

Here we propose two new synchronization resource management strategies intended
for general recursive and irregular computations that use combinations of compilation
techniques and simple local runtime mechanisms.
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2 Proposed Resource Management Strategies

The resource management strategies presented here1 differ in the restrictions they impose
on the order in which different users (function applications) are allowed access to a shared
reentrant graph. By varying these restrictions, the different strategies result in data flow
graphs that can be placed on a spectrum ranging from Fully Static Data Flow (FSDF)
to Fully Dynamic Data Flow (FDDF). We propose two new strategies that fall between
these endpoints. The first is called Semi-Static Data Flow (SSDF), and the second (which
is "more dynamic") is called Semi-Dynamic Data Flow (SDDF).

The access restrictior, make a difference between recursive and non-recursive calls
to a shared graph. Recursive calls are calls made from within a shared graph to the
same graph. Non-recursive calls are all other calls. We assume that every non-recursive
function application in a program results in a unique copy of the function graph. Since
the non-recursive application can be executed several times if it is part of a recursive
function, several non-recursive calls to a shared graph can be generated, but only from
one single point. We will also assume that all recursive applications of a function in
a program are given unique indexes called recursion levels. All other expressions are
assigned a recursion level by taking the maximum recursion level of its subexpressions or
zero if it has no subexpressions.

In FSDF, SSDF, and SDDF, non-recursive calls are not allowed to access a shared
graph before the previous non-recursive call to the same graph has produced a result and
terminated. In FDDF, non-recursive calls are allowed to access a graph at any time.

FSDF does not allow a recursive call until the previous recursive call has produced a
result and terminated. The effect of this restriction is that FSDF only allows tail-recursive
functions or loops. SSDF allows the recursive call with the lowest recursion level to access
the graph at any time. A recursive call C with a higher recursion level is only allowed to
access the graph when all recursive calls with lower recursion levels that were generated
in parallel with C have terminated. This allows all forms of recursion, but limits the
parallelism. SDDF and FDDF allow all recursive calls to be executed at any time.

The above gives that for all strategies except FSDF, more than one call can be using
a shared graph at the same time. This makes it necessary to distinguish arguments and
partial results that belong to different calls by assigning tags. Tags are allocated when a
call enters a shared graph. When the call exits the graph, the tag is deallocated (made
free for use by another call) and the tag that the arguments of the call had before entering
the graph is assigned to the result.

In SSDF and SDDF, a non-recursive call is given tag zero. Each non-recursive call in
FDDF is given a unique tag that is not being used in the shared graph when the call is
made.

Each call to a shared graph for a recursive function can cause one or more recursive
calls. In SSDF, each recursive call is given a new tag by adding one to the tag of the
call that generated it. With SDDF, local tag allocation is still possible, but it is a little
more complex than in SSDF. The new tag is computed by multiplying the old tag with
the maximum number of recursive calls that can be started concurrently and adding the
recursion level of the recursive call. A disadvantage with this tag allocation method is that
it can leave unused "holes" in the tag space for irregular functions which make varying
numbers of recursive calls, and it does not allow any tag value to be used more than once
for each non-recursive application. This tag allocation technique will not work for FDDF,

1Only a brief summary is presented here. A more detailed description is available as a technical report.
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which instead has to rely on a more expensive or slower global tag allocator.
In SSDF, SDDF, and FDDF, we have chosen to make the synchronization operations

explicit and to avoid using them where they are not needed. Thus, we use two kinds of
nodes. Ordinary nodes (e.g. operators and switches) operate according to the static data
flow firing rule, i.e., they will produce a results when input data are available at the inputs
and the output arcs are empty. Synchronization nodes have a synchronization memory
which either stores incoming data from two inputs and outputs matching pairs of data
with the same tag (wait-nodes), or acts as a FIFO buffer for incoming data (wait-buffers).

As mentioned above, wait-nodes are required at the input of all operators that depend
on results from expressions with different recursion levels. However, in SSDF the order in
which the inputs to such nodes will be computed is known, and thus the synchronization
can be made quicker than in SDDF and FDDF. This will give SSDF an advantage which
can be seen in some of the results in Section 3.

In SSDF, wait-nodes are also used to prevent arguments to recursive calls to enter the
shared graph until all calls with the same tag and a lower recursion level have terminated.
In both SSDF and SDDF, simplified wait-nodes which do not require any memory are
used to stop more than one non-recursive call from using a shared graph at any time.
In SDDF and FDDF, wait-buffers are needed at the argument entry points of a shared
graph to prevent dead-lock.

3 Results and Conclusions

Comparisons between the different strategies have been made using a dataflow compiler
and simulator developed according to the basic principles described in Section 2, for a
subset 2 of the Id dataflow language [31. The simulator assumes an unlimited number of
processors, single clock cycle execution time for all nodes, zero communication delay over
all arcs, and zero data and synchronization memory access delay. It also assumes that
tag allocation and deallocation takes no time, which favors the FDDF strategy.

A set of benchmark programs have been compiled according to the SSDF, SDDF, and
FDDF strategies. Through simulations, the effects of the three different strategies on
execution time and required synchronization resources have been measured. FSDF is not
included as it does not allow general recursion. As our primary interest is to investigate
resource management strategies for irregular, general recursive functions, rather than
functiops based on regular loops, the benchmarks fall primarily in the former category.
Primes computes a list of prime numbers up to a given limit. Sort sorts a list of numbers
using the insertion sort algorithm. Queens finds a solution to the Eight Queens problem.
Find searches for the first, longest occurrence of a pattern in text. The pattern can
contain wildcard characters. Fib computes the n:th Fibonacci number. Evdist computes
the "evolutionary distance" between two character strings, i.e., the minimum cost of
transforming one string to the other using fixed cost insert and delete operations.

The results for the SDDF and FDDF strategies are presented in Table 1. For each
benchmark, program execution time, the number of synchronization nodes, and the total
required synchronization memory (the sum of used memory in all synchronization nodes)
are presented. All numbers are relative to the SSDF strategy.

The results show that for all of the programs, SSDF requires less synchronization
resources than both SDDF and FDDF. In terms of execution time, the results can be

2 The subset excludes higher order functions, list and array comprehensions, and user defined data
types (but includes basic scalar types, lists, one- and two-dimensional arrays).
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SDDF FDDF
Bench- Exec Sync. {Sync. Exec Sync. Sync.
mark time nodes mere. time nodes merm.
Queens 1.59 6.30 3.58 1.71 7.15 7.84
Find 1.66 5.04 6.27 1.71 5.41 7.25
Sort 1.35 3.45 3.37 0.40 4.09 10.83

! Primes 1.25 2.65 3.31 0.67 3.13 8.24
Fib 0.17 2.75 347.92 0.15 2.88 63.08
Evdist 0.20 3.47 153.14 0.20 3.59 5k1.72

Table 1: Results.

divided into three categories. In the first category, Queens and Find, the most efficient
execution is achieved with the SSDF strategy. This indicates that these programs have
little overlap between both non-recursive calls and recursive calls of functions, and that
they gain from the lower synchronization overhead of SSDF. The second category consists
of Sort and Primes, which gain from FDDF but not from SDDF. This is consistent with
the fact that these programs make frequent repeated non-recursive calls, which can be
overlapped in FDDF. As in the first category, SDDF loses against SSDF because of the
higher synchronization overhead. In the last category are Fib and Evdist, which are
branching recursive and thus can exploit the overlap of recursive calls offered by SDDF
and FDDF but not SSDF. These programs also show the inefficiency of the local tag
allocation technique used in SDDF.

With these results, we have shown that due to its low synchronization overhead.
SSDF can sometimes offer a useful solution to the synchronization resource management
problem. It can be an alternative to k-bounded loops and hardware throttling in cases
where general recursion is required and specialized non-local resource managers have
to be avoided. Its primary disadvantage is that it is not capable of adapting to run-
time load variations. Due to its inefficient use of synchronization memory and its lack of
performance gain over FDDF, SDDF appears to have no advantages. However. the effects
of tag allocation overhead in FDDF have not been taken into account.
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Abstract: Trace software pipelining is a novel global software pipelining technique. It can
exploit instruction-level parallelism across all iterations of a loop by compacting the original
loop body with any global loop-free code scheduling technique. The resulting loop is called a
trace software pipelined (TSP) code, which can be executed directly with a special architectural
support or be transformed into a globally software pipelined loop for the current VLIW and
superscalar processors.
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1 Introduction

Global software pipelining is a sophisticated but efficient compilation technique to exploit
Instruction-Level Parallelism (ILP) for loops with branches [1,2,3,4,51. Trace Software
Pipelining (TSP) is a novel technique for performing global software pipelining, which
can exploit ILP across all iterations of a loop by compacting the original loop body while
ignoring the constraint of some data dependences.

After full renaming, we can remove all anti-dependences in the example of Fig.l(1).
There are loop-independent dependences between b and c, c and d, d and e, f and g.
There are loop-carried dependences between c and b, e and d, f and b, g and d. Under
the constraint of these data dependences, we can apply a global code scheduling technique
to compact the original loop body (see Fig.1(2)), but we can only exploit the ILP within
the loop body and can not exploit the ILP across iterations.

The idea behind TSP is that we compact the original loop body with ignoring the
constraint of some data dependences. For example, after we ignore the constraint of the
data dependences between c and d, f and g, we can globally compact the loop body to
get the compacted code, called TSP code, shown in Fig.2(l).

It is not easy to understand the TSP code before we introduce a new concept, iteration-
number. In order to preserve the program semantics, those ignored data dependences
should be recovered in the final pipelined loop. Therefore, it is required that the opera-
tions in the TSP code come from different iterations. We attach an iteration-number to
each operation. In Fig.2(l), the iteration-numbers of a,b,c,h and f are 2 and those of d,e
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I~~ ~ a: t••i÷ if-l stop
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1: stop
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a: stop (2) compacting the original loop body
(1) a loop

Fig.l An Example

and g are 1. That means, if d,e and g come from (i + 1)th iteration, then a,b,c,h and f
come from (i + 2)th iteration. With the iteration-numbers, we can view the TSP code as
a unified form of the pipelining of all traces' (see Fig.2(2)).

a,b a,b[ I da~ [C h f, hS•d a,b d a b
e cth a f: fh

d ac b b

[2; e,e,h [ h a ech gf~h

\d d
i stop 1: stop e ... g ...

the left trace the right trace
(1) the TSP code

(2) the pipelining of each trace
Fig.2 TSP Code

Thus, we have two problems to be addressed in this paper. (1) How to choose the
ignored dependences to derive a TSP code (Section 2)? (2) How to execute the TSP code
(Section 3)?

2 TSP Code
During compaction of the loop body, not all data dependences can be ignored. For the
loop in Fig.l(1), we can ignore the constraint of the dependences between c and d, f and
g, but we can not ignore the dependences between b and c, d and e.

The data dependence between operation opi and opj can be represented by two non-
negative integers, A(opi,opj) and b(opi, opj). For example, let (opi,opj) be a data de-
pendence, then opj can only be executed 6 (opi, opj) cycles after op. of the A(opi, opj)th
previous iteration has started executing [3,6].

Definition 1: Let L be a loop, TSP(L) be its TSP code. TSP(L) is a valid trace
software pipelined code of L if and only if we can find an iteration-number for each
operation of L, such that the following two conditions are satisfied:
(1) Let itn(op) be the iteration-number of op, dis(opi, opj) be the length of the path from

'We define a trace as a path from the entrance to one of the exits in the loop body.
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opi to opj, len(p) be the length of the trace p. Then for any trace p of TSP(L) and any
pair of operations (opi, opj) of p with a data dependence, (itn(opj)-itn(op,)+A(opj, opj))*
len(p) + dis(opi,opj) > 6(opi, opj).
(2) Let opt be a test operation, B1 and B2 are its branches in TSP(L), for any op E
B1UB2, if op is not one of the operations which are moved down across opt then itn(opt) >
itn(op); <

The first condition guarantees that all ignored dependences can be recovered and the
second guarantees that we can get a transformed sequential loop (see the next section).

We present a three-step method2 for constructing a TSP code: (1) Find out the
strongly connected components; (2) Select those loop-independent dependences not in-
cluded in the strongly connected components as the dependences whose constraints can be
ignored; (3) Call a global code scheduling technique to globally compact the original loop
body with ingorance of the constraint of those selected loop-independent dependences.
We have proven that the method can generate a valid TSP code. The iteration-numbers
of all operations can be computed by Definition 1. Wang and Eisenbeis give a detailed
method in [6].

3 Execution of TSP Code

3.1 Hardware Method

A TSP code can be executed directly with a special architectural support. The principle is
that, when the loop continuously executes a trace, the pipelining of the trace is executed;
when the loop transfers from a trace to another, the postlude of the former and the prelude
of the latter should be first executed and then the pipelining of the latter is executed.
Hence, a trace analyzer is needed to check the executing trace in run-time.

3.2 Software Method

A TSP code can be transformed at compile time into an equivalent globally software
pipelined loop. As the first step, we transform the TSP code into a sequential loop
which can be executed in the way of preserving the prtgram semantics. For example, the
sequential loop transformed from the TSP code in Fig.2(l) is shown in Fig.3(1). In the
transformed sequential loop, we only exploit the ILP within the loop body; and the ILP
across loop bodies will be exploited in the next step. Next, we pipeline the transformed
sequential loop bodies. The TSP code gives two constraints on the pipelining process: (1)
It gives the initiation intervals for all loop traces; and (2) it gives the pipelined results
for all loop traces. Thus, the pipelining is easily done. It is only necessary to schedule
the "transfering" postludes and preludes. For the example in Fig.3(l), the final result is
shown in Fig.3(2).

4 Conclusion

Trace software pipelining expresses the globally software pipelined loop in the form of TSP
code, thereby exploiting ILP across all iterations of a loop can be done by compacting the
original loop body with a global loop-free code scheduling technique. A TSP code can be

2This method is efficient if full renaming is done.
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(21 an equivaleat globally
software pipelined loop

Fig.3 Transformation from TSP Code to Globally Software Pipelined Loop

executed dir,:ctly with an architectural support, so we expeict that trace software pipelining
is promising for solving the code complexity problem of global software pipelining.
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